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Abstract. Security amplification results for block ciphers typically state that cascading (i.e.,
composing with independent keys) two (or more) block ciphers yields a new block cipher that
offers better security against some class of adversaries and/or that resists stronger adversaries
than each of its components. One of the most important results in this respect is the so-called “two
weak make one strong” theorem, first established up to logarithmic terms by Maurer and Pietrzak
(TCC 2004), and later optimally tightened by Maurer, Pietrzak, and Renner (CRYPTO 2007),
which states that, in the information-theoretic setting, cascading F and G−1, where F and G
are respectively (q, εF )-secure and (q, εG)-secure against non-adaptive chosen-plaintext (NCPA)
attacks, yields a block cipher which is (q, εF + εG)-secure against adaptive chosen-plaintext and
ciphertext (CCA) attacks. The first contribution of this work is a surprisingly simple proof of
this theorem, relying on Patarin’s H-coefficient method. We then extend our new proof to obtain
new results (still in the information-theoretic setting). In particular, we prove a new composition
theorem (which can be seen as the generalization of the “two weak make one strong” theorem to
the composition of n > 2 block ciphers) which provides both amplification of the advantage and
strengthening of the distinguisher’s class in some optimal way (indeed we prove that our new
composition theorem is tight up to some constant).
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1 Introduction

Security Amplification for Block Ciphers. The usual security notion for a block cipher
E is pseudorandomness, which measures the (in-)ability of an adversary (the distinguisher)
which is given oracle access to a permutation (and potentially its inverse) to tell whether it is
interacting with the block cipher EK for some randomly drawn key K or with a truly random
permutation. One usually classifies distinguishers according to the way they can issue their
queries. A distinguisher which can only make direct (plaintext) queries to the permutation
oracle is called a CPA-distinguisher, whereas it is called a CCA-distinguisher when it can
make both direct and inverse (ciphertext) queries. Both types come in a non-adaptive variant
(NCPA and NCCA respectively), i.e., the adversary must choose all its queries before receiving
any answer from the permutation oracle. A block cipher is said to be (q, ε)-ATK secure when
no distinguisher in the attack class ATK (for instance NCPA, etc.) making at most q oracle
queries can distinguish EK from a truly random permutation with advantage better than ε.

The security amplification problem is to determine whether adequately combining some
mildly secure block ciphers E1, . . . , En can yield a block cipher F with stronger security
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guarantees than each of its components. (This question naturally extends to other cryptographic
primitives such as pseudorandom generators or pseudorandom functions, but in this paper we
focus on pseudorandom permutations, i.e., block ciphers.) Here, “stronger” security guarantees
might mean either that F has a smaller distinguishing advantage in face of some fixed
class of distinguishers than each component Ei (something we will informally refer to as
ε-amplification), or that F can withstand attacks from a stronger class of adversaries than
each of its components (something we will call class-amplification). We clarify this distinction
with a prominent example of each type of result.

The classical example of an ε-amplification result states that cascading two block ciphers
F and G which are respectively (q, εF )- and (q, εG)-NCPA (resp. CPA) secure yields a block
cipher which is (q, 2εF εG)-NCPA (resp. CPA) secure. Hence, when εF , εG < 1/2, the new block
cipher is indeed strictly more secure than each of its components. This was proved (in the
information-theoretic setting, i.e., when considering computationally unbounded adversaries)
by Vaudenay (see [Vau98] for the non-adaptive case and [Vau99] for the adaptive case) using
the decorrelation theory framework [Vau03]. (See also [KNR09, Theorem 3.8] for a different
proof for self-composition in the non-adaptive case.) A computational analogue of this result
was later proved by Maurer and Tessaro [MT09].

For the class-amplification type of results, one of the most notable examples is what we
will refer to as the “two weak make one strong” (2W1S for short) theorem, which states
that if F and G are resp. (q, εF )- and (q, εG)-NCPA secure, then the composition G−1 ◦ F is
(q, εF +εG)-CCA secure (a result which is tight in general). Note that here, the resulting cipher
withstands much stronger attacks than each component F and G, but its CCA advantage
is strictly larger than each of the NCPA advantages of F and G. This theorem was first
proved up to logarithmic terms by Maurer and Pietrzak [MP04], while the tight version
was later proved by Maurer, Pietrzak, and Renner [MPR07] using the framework of random
systems [Mau02]. We stress that this result only holds in the information-theoretic setting. In
the computational setting, the composition of non-adaptively secure block ciphers does not, in
general, yield an adaptively secure one [Mye04, Pie05a], though some partial positive results
are known [LR86, Pie06].

Our Contribution. The starting point of our work is a surprisingly simple proof of the 2W1S
theorem. Our new technique relies on simple manipulations of transition probabilities (which
are nothing else, up to some normalization factors, than the H-coefficients of Patarin [Pat08])
and eschews completely the heavy machinery of the random systems framework [Mau02] on
which the only previously known proof was based [MPR07]. We think that having an elementary
proof of an important result (on which a number of subsequent papers rely, notably in coupling-
based security proofs [MRS09, HR10, LPS12, LS14]) is an interesting contribution in itself. To
emphasize our point, we stress that a crucial lemma of the random systems framework (namely
Theorem 2 of [Mau02]), to which the proof of the 2W1S theorem of [MPR07] appeals, was later
found to be incorrectly stated (and also that the only known proof of this lemma in [Pie05b]
was flawed) by Jetchev et al. [JÖS12]. Hence, the 2W1S theorem can only be considered
formally proven by combining results from three different papers [Mau02, MPR07, JÖS12], a
somehow unsatisfying state of affairs.

Motivated by our findings, we consider the following problem: given three (or more) block
ciphers which are (q, ε)-NCPA secure, can we get both ε-amplification and class-amplification
at the same time, i.e., a composed block cipher which is (q, ε′)-CCA secure for ε′ < ε, in some
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optimal manner?1 Focusing on self-composition for simplicity, consider a block cipher E such
that both E and E−1 are (q, ε)-NCPA secure.2 What can we say about the CCA-security of
the n-fold composition En? Using known results, a straightforward answer (assuming n even)
can be obtained by first (recursively) applying the ε-amplification theorem for NCPA-secure
block ciphers to each half of the cascade, thereby getting

Advncpa
En/2(q) ≤ 2

n
2−1ε

n
2 and Advncpa

(En/2)−1(q) ≤ 2
n
2−1ε

n
2 ,

and then the 2W1S theorem to obtain

Advcca
En(q) ≤ Advncpa

En/2(q) + Advncpa
(En/2)−1(q) ≤ (2ε)

n
2 .

For n odd, a similar reasoning yields (by cutting En into two unbalanced halves)

Advcca
En(q) ≤ Advncpa

E(n+1)/2(q) + Advncpa
(E(n−1)/2)−1(q) ≤ 2

n−1
2 ε

n+1
2 + 2

n−3
2 ε

n−1
2 .

In particular, for n = 3, the best one can prove from previous results is that

Advcca
E3 ≤ ε+ 2ε2.

Hence, one gets (provable) ε-amplification only for n ≥ 4, assuming ε < 1/4.
In this paper, we prove that the CCA-security of En is actually much better, namely

Advcca
En(q) ≤ (2ε)n−1.

Hence, for n ≥ 3, this provides both ε-amplification and class-amplification as soon as

ε <
1

2 · 21/(n−2)

(hence, in particular as soon as ε < 1/4 for any n ≥ 3). In fact we prove a more general theorem
(see Theorem 2) which also implies the following interesting corollary. Let E, F , G be three
block ciphers such that E, F , F−1 and G−1 are (q, ε)-NCPA secure. Then the composition
G ◦ F ◦ E is (q, 4ε2)-CCA secure.

A Word of Interpretation. Our new result has some interesting implications regarding
the superiority of triple- versus double-encryption. This fact has already been widely analyzed
in the ideal cipher model [ABCV98, BR06]. Our new theorem may be seen as yet another
expression of this phenomenon in the standard, information-theoretic setting. For concreteness,
assume that we have at hand a block cipher E such that E and E−1 are only, say, (240, 2−30)-
NCPA secure, a mild security insurance by current standards. Using double-encryption, one
“restores” NCPA-security (since E2 and (E2)−1 are ensured to be (240, 2−59)-NCPA secure) but
in general one cannot exclude that a CCA-attack will break E2 with 240 queries and advantage
2−30. On the other hand, triple-encryption is good enough here, since our new result shows
that E3 is (240, 2−58)-CCA secure.

1 This requires at least three block ciphers since the 2W1S theorem is tight. Hence, in general, from two
(q, ε)-NCPA secure block ciphers F and G, one can at best obtain a (q, 2ε)-CCA secure one.

2 A larger number of block cipher designs have similar provable security in the direct and inverse direction
because of their involution-like structure, for example balanced Feistel schemes.
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Related Work. The topic of security amplification is too broad to be entirely covered
here. Restricting our attention to block cipher security amplification, we mention that a long
line of work considered provable security results for cascade encryption in the ideal cipher
model [ABCV98, BR06, GM09, Lee13], which is quite orthogonal to our setting: working in
the ideal cipher model is in some sense equivalent to upper bounding the knowledge of the
adversary on the underlying block cipher(s) (since it can only make a limited number of ideal
cipher queries), whereas we consider computationally unbounded adversaries, in the standard,
non-idealized model (in particular, the adversary has complete knowledge of the underlying
block cipher(s), and may, e.g., represent them as a huge look-up table).

Organization. We start with useful definitions and the necessary background on transition
probabilities and how these quantities are related to the advantage against different classes
of distinguishers in Section 2. In Section 3, we give our new and substantially simpler proof
of the 2W1S theorem. Then, in Section 4, we extend this result to the general case of the
composition of n ≥ 2 non-adaptively secure block ciphers (we treat the special case n = 3 in
Appendix D). Finally, in Section 5, we show that our new result is tight up to some constant.

2 Preliminaries

2.1 Notation and Definitions

Given a non-empty set S, the set of all permutations of S is denoted Perm(S). We write
s←$ S to mean that a value is sampled uniformly at random from S and assigned to s.

Definition 1 (Statistical Distance). Let Ω be a finite event space and let µ and ν be two
probability distributions defined on Ω. The statistical distance (or total variation distance)
between µ and ν, denoted ‖µ− ν‖ is defined as:

‖µ− ν‖ = 1
2
∑
ω∈Ω
|µ(ω)− ν(ω)|.

The following definitions can easily be seen equivalent:

‖µ− ν‖ = max
S⊆Ω
{µ(S)− ν(S)} = max

S⊆Ω
{ν(S)− µ(S)} = max

S⊆Ω
{|µ(S)− ν(S)|} .

Composition of Block Ciphers. LetM and K be two sets. A block cipher with message
space M and key space K is a mapping E : K ×M → M such that for any K ∈ K, the
partial mapping E(K, ·) is a permutation ofM. We interchangeably use the notation EK(x)
for E(K,x), the inverse of EK being denoted E−1

K . Given two block ciphers E and F with the
same message space M and respective key spaces KE and KF , we denote F ◦ E the block
cipher with message spaceM and key space KE ×KF defined as

F ◦ E(KE ,KF )(x) = FKF
(EKE

(x)).

We call F ◦ E interchangeably the composition or the cascade of E and F . This definition
extends straightforwardly to the composition of n > 2 block ciphers. We denote En the n-fold
self-composition of E (with independent keys).
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2.2 Security Definitions and Classical Lemmas

Fix some message space M and denote M = |M|. We denote (M)q the set of all q-tuple
of pairwise distinct elements of M. Let E be a block cipher with message space M and
key space KE . Given an integer q ≥ 1 and two q-tuples x = (x1, . . . , xq) ∈ (M)q and
y = (y1, . . . , yq) ∈ (M)q of pairwise distinct elements ofM, we denote

pE(x, y) = Pr [K ←$ KE : EK(x) = y] = |{K ∈ KE : EK(x) = y}|
|KE |

,

where the notation EK(x) = y is a shorthand meaning that EK(xi) = yi for all 1 ≤ i ≤ q. We
also denote

p∗ = Pr [P ←$ Perm(M) : P (x) = y] = 1
M(M − 1) · · · (M − q + 1) .

When x is fixed,
pE,x : y 7→ pE(x, y)

is the probability distribution (over the choice of a uniformly random key K ←$ KE) of the
q-tuple of ciphertexts when E receives the q-tuple of plaintexts x. Similarly, when y is fixed,

pE−1,y : x 7→ pE(x, y)

is the probability distribution of the q-tuples of plaintexts when E−1 receives the q-tuple of
ciphertexts y. Overloading the notation, p∗ will also denote the uniform probability distribution
over (M)q. Note that for any x = (x1, . . . , xq) ∈ (M)q and any y = (y1, . . . , yq) ∈ (M)q,∑

z∈(M)q

(pE(x, z)− p∗) =
∑

z∈(M)q

(pE(z, y)− p∗) = 0. (1)

Let D be a distinguisher with (potentially two-sided) oracle access to some permutation
P ∈ Perm(M), whose goal is to distinguish whether it is interacting with EK(·) for some
random key K ←$ K, or with a uniformly random permutation P ←$ Perm(M). We classify
distinguishers according to the type of attacks they can perform:

– chosen-plaintext attacks (CPA), where D can only make direct (i.e., plaintext) queries to
the permutation oracle,

– and chosen-plaintext and ciphertext attacks (CCA), where D can make both direct and
inverse (i.e., ciphertext) queries to the permutation oracle.

Additionally, we also consider the non-adaptive variants of these two types of attacks, namely
NCPA and NCCA, where the distinguisher must choose all its queries before receiving any
answer from the permutation oracle. We consider computationally unbounded distinguishers,
and we assume wlog that the distinguisher is deterministic and never makes redundant queries.

The distinguishing advantage of D is defined as

Adv(D) =
∣∣∣Pr

[
K ←$ K : DEK = 1

]
− Pr

[
P ←$ Perm(M) : DP = 1

]∣∣∣ ,
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where, depending on the type of the distinguisher, D can make one-sided or two-sided queries
to the permutation oracle. For q a non-negative integer, the insecurity (or advantage) of E
against ATK-attacks, where ATK ∈ {(N)CPA, (N)CCA} is defined as

Advatk
E (q) = max

D
Adv(D),

where the maximum is taken over all distinguishers D of type ATK making at most q oracle
queries. We say that E is (q, ε)-ATK secure if Advatk

E (q) ≤ ε.
Our analysis will rely on the H-coefficient method, first introduced by Patarin to prove the

strong pseudorandomness of the 4-round Feistel scheme [Pat90, Pat91, Pat08]. We recall the
two fundamental results of the H-coefficient method, regarding NCPA and CCA distinguishers
respectively. For completeness, we give a proof of these results in Appendix A.

Lemma 1 (NCPA security). Let E be a block cipher with message spaceM. Then

Advncpa
E (q) = max

x∈(M)q

‖pE,x − p∗‖.

Lemma 2 (CCA security). Let E be a block cipher with message space M. Assume that
there exists ε such that for any q-tuples x, y ∈ (M)q, one has

pE(x, y) ≥ (1− ε)p∗.

Then
Advcca

E (q) ≤ ε.

3 A Simple Proof of the “Two Weak Make One Strong” Theorem

In this section, we derive in a straightforward manner the “two weak make one strong”
theorem [MP04, MPR07]. We start by giving a handful expression for the quantity pF◦E(x, y).

Lemma 3. Let E and F be two block ciphers with the same message spaceM and respective
key spaces KE and KF . Then for any q-tuples x and y of pairwise distinct elements ofM, one
has

pF◦E(x, y) = p∗ +
∑

z∈(M)q

(pE(x, z)− p∗)(pF (z, y)− p∗). (2)

Proof. One has

pF◦E(x, y) =
∑

z∈(M)q

pE(x, z)pF (z, y)

=
∑
z

(pE(x, z)− p∗ + p∗)(pF (z, y)− p∗ + p∗)

=
∑
z

(pE(x, z)− p∗)(pF (z, y)− p∗)

+ p∗
∑
z

(pE(x, z)− p∗)︸ ︷︷ ︸
=0 by (1)

+p∗
∑
z

(pF (z, y)− p∗)︸ ︷︷ ︸
=0 by (1)

+
∑
z

(p∗)2

︸ ︷︷ ︸
=p∗

= p∗ +
∑
z

(pE(x, z)− p∗)(pF (z, y)− p∗),

from which the result follows. ut
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The next step is to lower bound the sum appearing in the right hand-side of (2). Note
that this term is exactly a covariance term. In particular, one could use the Cauchy-Schwarz
inequality to get∣∣∣∣∣∣

∑
z∈(M)q

(pE(x, z)− p∗)(pF (z, y)− p∗)

∣∣∣∣∣∣ ≤
√ ∑
z∈(M)q

(pE(x, z)− p∗)2
√ ∑
z∈(M)q

(pF (z, y)− p∗)2.

However, the quantities appearing in the right hand-side involve the Euclidean distance between
pE,x (resp. pF−1,y) and p∗, which to the best of our knowledge is not related to any standard
attack. Hence we prove in the next lemma a different bound which involves the statistical
distance instead, which, as recalled in Lemma 1, is related to NCPA attacks.

Lemma 4. Let E and F be two block ciphers with the same message spaceM and respective
key spaces KE and KF . Then for any q-tuples x and y of pairwise distinct elements ofM, one
has ∑

z∈(M)q

(pE(x, z)− p∗)(pF (z, y)− p∗) ≥ −p∗
(
‖pE,x − p∗‖+ ‖pF−1,y − p∗‖

)
.

Proof. Let

S
def=

∑
z∈(M)q

(pE(x, z)− p∗)(pF (z, y)− p∗) =
∑

z∈(M)q

(pE,x(z)− p∗)(pF−1,y(z)− p∗).

To simplify notation, we rename the probability distributions as µ := pE,x and ν := pF−1,y.
Then, keeping only the negative terms in the sum, we have

S ≥
∑

z∈(M)q :
{
µ(z)>p∗
ν(z)<p∗

(µ(z)− p∗)(ν(z)− p∗) +
∑

z∈(M)q :
{
µ(z)<p∗
ν(z)>p∗

(µ(z)− p∗)(ν(z)− p∗)

≥
∑

z∈(M)q :
{
µ(z)>p∗
ν(z)<p∗

(µ(z)− p∗)(−p∗) +
∑

z∈(M)q :
{
µ(z)<p∗
ν(z)>p∗

(−p∗)(ν(z)− p∗)

= −p∗

 ∑
z∈(M)q :

{
µ(z)>p∗
ν(z)<p∗

(µ(z)− p∗) +
∑

z∈(M)q :
{
µ(z)<p∗
ν(z)>p∗

(ν(z)− p∗)


≥ −p∗(‖µ− p∗‖+ ‖ν − p∗‖),

where for the last inequality we used that

‖µ− p∗‖ = max
S⊆(M)q

∑
z∈S

(µ(z)− p∗)

(and the analogue equality for ν). This proves the result. ut

We can finally prove the “two weak make one strong” composition theorem.

Theorem 1. Let E and F be two block ciphers with the same message space M. For any
integer q, one has

Advcca
F◦E(q) ≤ Advncpa

E (q) + Advncpa
F−1 (q).
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Proof. Fix any q-tuples x, y ∈ (M)q. Then

pF◦E(x, y) = p∗ +
∑

z∈(M)q

(pE(x, z)− p∗)(pF (z, y)− p∗) (Lemma 3)

≥ p∗ − p∗
(
‖pE,x − p∗‖+ ‖pF−1,y − p∗‖

)
(Lemma 4)

≥ p∗(1−Advncpa
E (q)−Advncpa

F−1 (q)). (Lemma 1)

The result follows by Lemma 2. ut

To illustrate the usefulness of Eq. (2), we give a simple proof of the ε-amplification theorem
for NCPA-secure ciphers [Vau98] in Appendix B, as well as an amplification theorem for
security against known-plaintext attacks (KPA) in Appendix C.

4 Many Weak Make One Even Stronger

Let n ≥ 1 be an integer. In this section, we extend Theorem 1 to the composition of n block
ciphers (the special case n = 3 is treated in details in Appendix D). We start by generalizing
Lemma 3.

Lemma 5. Let E1, . . . , En be n block ciphers with the same message spaceM. Then for any
q-tuples x and y of pairwise distinct elements ofM, one has

pEn◦···◦E1(x, y) = p∗ +
∑

x1,...,xn−1∈(M)q

(
n∏
i=1

(pEi(xi−1, xi)− p∗)
)

(3)

where x0 := x and xn := y.

Proof. This result can be shown by induction. For i ≥ 1, let (Hi) be the following proposition:
for any j ∈ {1, . . . , i}, for any block ciphers E1, . . . , Ej with the same message spaceM and
for any q-tuples x0 and xj of pairwise distinct elements ofM, one has

pEj◦···◦E1(x0, xj) = p∗ +
∑

x1,...,xj−1∈(M)q

 j∏
i=1

(pEi(xi−1, xi)− p∗)

 .
Lemma 3 corresponds to (H2).

Assume that (Hk) holds for an integer k ≥ 2. Let E1, . . . , Ek+1 be block ciphers with the
same message spaceM and x0, xk+1 ∈ (M)q. Then

pEk+1◦···◦E1(x0, xk+1) = p∗ +
∑

x1∈(M)q

(pE1(x0, x1)− p∗)(pEk+1◦···◦E2(x1, xk+1)− p∗) (H2)

= p∗ +
∑

x1∈(M)q

(pE1(x0, x1)− p∗)
∑

x2,...,xk
∈(M)q

k+1∏
i=2

(pEi(xi−1, xi)− p∗) (Hk)

from which the result follows. ut
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We now have to study the sum appearing in the right hand-side of (3) in the same way as
in the proof of Lemma 4, i.e., by splitting the sum according to the sign of each term of the
product. In order to have a more compact notation, for a tuple (t0, . . . , tn) ∈ ((M)q)n+1 and
for each i ∈ {1, . . . , n} we denote:

– C0,i the inequality pEi(ti−1, ti)− p∗ > 0 and
– C1,i the inequality pEi(ti−1, ti)− p∗ < 0.

Then every part of the sum can be parametrized with a n-tuple k = (k1, . . . , kn) of integers
in {0, 1}, the product being positive if and only if k1 + . . . + kn ≡ 0 mod 2. Of course, the
cases which have to be dealt carefully with are the ones where the product is negative (i.e.,
k1 + . . .+ kn ≡ 1 mod 2). This is what is done in the following lemma.

Lemma 6. Let E1, . . . , En be n block ciphers with the same message space M and k =
(k1, . . . , kn) ∈ {0, 1}n such that k1 + . . .+ kn ≡ 1 mod 2. For any fixed q-tuples t0, tn in (M)q,
denote

Ak(t0, tn) := {(t1, . . . , tn−1) ∈ ((M)q)n−1 | ∀i ∈ {1, . . . , n}, Cki,i holds}.

Then

∑
t∈Ak(t0,tn)

∏
1≤i≤n

(pEi(ti−1, ti)− p∗) ≥ −p∗ max
1≤i≤n

 ∏
1≤j≤i−1

Advncpa
Ej

(q)×
∏

i+1≤j≤n
Advncpa

E−1
j

(q)

 .
Proof. Since k1+. . .+kn ≡ 1 mod 2, one can find an index j such that kj = 1, i.e., pEj (tj−1, tj)−
p∗ < 0. Then, one has∑

t∈Ak(t0,tn)

∏
1≤i≤n

(pEi(ti−1, ti)− p∗) ≥ −p∗
∑

t∈Ak(t0,tn)

∏
1≤i≤n
i 6=j

(pEi(ti−1, ti)− p∗).

In the sum appearing in the right hand-side, every term is positive since there is an even
number of negative terms in each product. Hence,∑

t∈Ak(t0,tn)

∏
1≤i≤n

(pEi(ti−1, ti)− p∗) ≥ −p∗
∑

t∈Ak(t0,tn)

∏
1≤i≤n
i 6=j

|pEi(ti−1, ti)− p∗|.

Let

B := {(t1, . . . , tj−1) ∈ ((M)q)j−1 | ∀i ∈ {1, . . . , j − 1}, Cki,i holds} and
C := {(tj , . . . , tn−1) ∈ ((M)q)n−j | ∀i ∈ {j + 1, . . . , n}, Cki,i holds}.

One has Ak(t0, tn) ⊆ B × C since the only difference between the sets is that in B × C we
dropped the requirement that Ckj ,j (i.e., inequality pEj (tj−1, tj) < p∗) holds. Hence,∑
t∈Ak(t0,tn)

∏
1≤i≤n

(pEi(ti−1, ti)− p∗) ≥ −p∗
∑

t∈B×C

∏
1≤i≤n
i 6=j

|pEi(ti−1, ti)− p∗|

≥ −p∗
 ∑

(t1,...,tj−1)∈B

∏
1≤i≤j−1

|pEi(ti−1, ti)− p∗|


︸ ︷︷ ︸

S1

 ∑
(tj ,...,tn−1)∈C

∏
j+1≤i≤n

|pEi(ti−1, ti)− p∗|


︸ ︷︷ ︸

S2

.
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These sums S1 and S2 should be studied independently. For S1, we have

S1 =
∑

t1∈(M)q :
Ck1,1

|pE1(t0, t1)− p∗|
∑

t2∈(M)q :
Ck2,2

|pE2(t1, t2)− p∗| . . .
∑

tj−1∈(M)q :
Ckj−1,j−1

|pEj−1(tj−2, tj−1)− p∗|

≤
∑

t1∈(M)q :
Ck1,1

|pE1(t0, t1)− p∗| . . .
∑

tj−2∈(M)q :
Ckj−2,j−2

|pEj−2(tj−3, tj−2)− p∗| × ‖pEj−1,tj−2 − p∗‖

≤ Advncpa
Ej−1

(q)
∑

t1∈(M)q :
Ck1,1

|pE1(t0, t1)− p∗| . . .
∑

tj−2∈(M)q :
Ckj−2,j−2

|pEj−2(tj−3, tj−2)− p∗|

...

≤
∏

2≤i≤j−1
Advncpa

Ei
(q)

∑
t1∈(M)q :
Ck1,1

|pE1(t0, t1)− p∗|

≤
∏

2≤i≤j−1
Advncpa

Ei
(q)× ‖pE1,t0 − p∗‖

≤
∏

1≤i≤j−1
Advncpa

Ei
(q).

Similarly one has:

S2 =
∑

tn−1∈(M)q :
Ckn,n

|pEn(tn−1, tn)− p∗| . . .
∑

tj∈(M)q :
Ckj+1,j+1

|pEj+1(tj , tj+1)− p∗|

≤
∑

tn−1∈(M)q :
Ckn,n

|pEn(tn−1, tn)− p∗| . . .
∑

tj+1∈(M)q :
Ckj+2,j+2

|pEj+2(tj+1, tj+2)− p∗| × ‖pE−1
j+1,tj+1

− p∗‖

≤ Advncpa
E−1

j+1
(q)

∑
tn−1∈(M)q :

Ckn,n

|pEn(tn−1, tn)− p∗| . . .
∑

tj+1∈(M)q :
Ckj+2,j+2

|pEj+2(tj+1, tj+2)− p∗|

...

≤
∏

j+1≤i≤n
Advncpa

E−1
i

(q),

from which the result follows. ut

We can now prove the extension of Theorem 1.

Theorem 2. Let E1, . . . , En be n block ciphers with the same message space M. For any
integer q, one has

Advcca
En◦···◦E1(q) ≤ 2n−1 max

1≤i≤n

 ∏
1≤j≤i−1

Advncpa
Ej

(q)×
∏

i+1≤j≤n
Advncpa

E−1
j

(q)

 .
10



Proof. Fix any q-tuples x0, xn ∈ (M)q. Then

pEn◦···◦E1(x, y) = p∗ +
∑

(x1,...,xn−1)∈((M)q)n−1

 ∏
1≤i≤n

(pEi(xi−1, xi)− p∗)

 (Lemma 5)

= p∗ +
∑

k∈{0,1}n

∑
(x1,...,xn−1)∈
Ak(x0,xn)

 ∏
1≤i≤n

(pEi(xi−1, xi)− p∗)



≥ p∗ +
∑

k∈{0,1}n:
k1+...+kn≡1 mod 2

∑
(x1,...,xn−1)∈
Ak(x0,xn)

 ∏
1≤i≤n

(pEi(xi−1, xi)− p∗)



≥ p∗ − 2n−1p∗ max
1≤i≤n

 ∏
1≤j≤i−1

Advncpa
Ej

(q)
∏

i+1≤j≤n
Advncpa

E−1
j

(q)

 . (Lemma 6)

The result follows by Lemma 2. ut

Remark 1. The upper bound of Theorem 2 is not tight in general already for n = 2. Indeed it
is not hard to verify that Theorem 1 yields a better bound (at least when E1 and E−1

2 have
different levels of NCPA-security).

Corollary 1. Let E1, . . . , En be n block ciphers with the same message spaceM. Fix q ≥ 1.
For i = 1, . . . , n, let εi = max{Advncpa

Ei
(q),Advncpa

E−1
i

(q)}. Then one has

Advcca
En◦···◦E1(q) ≤ 2n−1 max

1≤i≤n

∏
1≤j≤n
j 6=i

εj .

Remark 2. It is actually not hard to see that Corollary 1 also holds with ε1 = Advncpa
E1

(q)
and εn = Advncpa

E−1
n

, i.e., E1 and En need only be secure in one direction. Only the “internal”
components E2, . . . , En−1 are required to be secure in both directions.

In the case of self-composition, we obtain the following corollary.

Corollary 2. Let E be a block cipher and q ≥ 1. Denote ε = max{Advncpa
E (q),Advncpa

E−1 (q)}.
Then, for any integer n ≥ 1,

Advcca
En(q) ≤ (2ε)n−1.

Remark 3. The assumption required for Corollary 2, namely that both E and E−1 are (q, ε)-
NCPA secure, might seem much stronger than simply assuming that E is (q, ε)-NCPA secure.
However, the schemes used in block ciphers are often involutions or close to involutions (for
example balanced Feistel schemes). Then one needs to determine only one of these upper
bounds. We stress that there exists block cipher designs such that the NCPA-security of E−1

is much worse than the NCPA-security of E, the prominent example being type-1 generalized
Feistel schemes [ZMI89, MV00], which is the basis for example of CAST-256.
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5 On the Tightness of the Bound

The 2W1S theorem was shown to be tight in [MPR07] (see Appendix A of the full version
of [MPR07]). In this section, we generalize the proof of tightness of [MPR07] to show that the
bound of Theorem 2 is tight up to some constant.

As in [MPR07], denote G the family of all permutations ofM such that 0 lies on a cycle
of length 2 (i.e., ∀g ∈ G, g(g(0)) = 0). Seeing G as a block cipher3, it can be shown that
Advncpa

G (q) ≤ 2q
|M| and Advcca

G (2) ≥ 1− 2
|M| . Then let us define the block cipher F such that:

– with probability ε, F is the identity function I,
– with probability 1− ε, F is uniformly randomly chosen in G.

Fix any constants δ, δ′, δ′′ > 0. Then

Advncpa
F (q) = εAdvncpa

I (q) + (1− ε)Advncpa
G (q) ≤ ε+ 2q

|M|
≤ (1 + δ)ε, (4)

where for the last inequality we assumed |M| sufficiently large.
Now consider the block cipher Fn for a fixed integer n ≥ 2. Consider the adaptive

distinguisher D making two queries to its permutation oracle P , P (0) and then P (P (0)),
and outputs 1 iff P (P (0)) = 0. When interacting with a random permutation, D outputs 1
with probability exactly4 2/|M|, while when it is interacting with Fn, it outputs 1 (at least)
whenever n − 1 among the n instances of F are the identity function, which happens with
probability n(1− ε)εn−1. Hence, for any q ≥ 2, one has

Advcca
Fn (q) ≥ n(1− ε)εn−1 − 2

|M|
≥ n

(1 + δ′)(1 + δ′′)ε
n−1,

where for the last inequality we assumed ε sufficiently small and |M| sufficiently large. Using (4),
we finally obtain

Advcca
Fn (q) ≥ n

(1 + δ)n−1(1 + δ′)(1 + δ′′)(Advncpa
F )n−1.

Since δ, δ′, and δ′′ can be made arbitrarily close to zero, this essentially shows that the best
upper bound one can hope for in Corollary 2 is nεn−1. Closing the gap between the proven
upper bound 2n−1εn−1 and nεn−1 remains as an interesting open problem.
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A Omitted Proofs

Proof (of Lemma 1). Fix some NCPA-distinguisher D. Since we consider deterministic distin-
guishers, D is completely characterized by its q-tuple of queries x = (x1 . . . , xq) and its decision
function φD : (M)q → {0, 1}, where φD(y) is the output of D when receiving y = (y1, . . . , yq)
as answers to its queries. By definition of the advantage,

Adv(D) =
∣∣∣ ∑
y∈(M)q :φD(y)=1

Pr [K ←$ K : EK(x) = y]

−
∑

y∈(M)q :φD(y)=1
Pr [P ←$ Perm(M) : P (x) = y]

∣∣∣
=
∣∣∣ ∑
y∈(M)q :φD(y)=1

(pE,x(y)− p∗)
∣∣∣

≤ ‖pE,x − p∗‖.

By maximizing over x ∈ (M)q, we obtain

Advncpa
E (q) ≤ max

x∈(M)q

‖pE,x − p∗‖.

To prove the equality of the two quantities, consider the distinguisher which queries the q-tuple
x which maximizes ‖pE,x − p∗‖, and outputs 1 iff the answer y satisfies pE(x, y) ≥ p∗. Then
the advantage of this distinguisher is exactly ‖pE,x − p∗‖, which concludes the proof. ut

Proof (of Lemma 2). Fix some CCA-distinguisher D. Let τ be the transcript of the interaction
of D with its permutation oracle, i.e., the ordered q-tuple of queries and answers (bi, zi, z′i)
where bi is a bit indicating whether the i-th query is direct or inverse, zi is the value queried
to the oracle and z′i the answer. From this transcript, we define the directionless transcript
τ ′ = (x, y), with x = (x1, . . . , xq) and y = (y1, . . . , yq) as follows: if the i-th query was a direct
query, we let xi = zi and yi = z′i, and if it was an inverse query we let xi = z′i and yi = zi.
We say that a transcript τ is attainable if there exists a permutation P ∈ Perm(M) such that
the interaction of D with P produces τ (in other words, the probability to obtain τ when D
interacts with a random permutation is non-zero). Since the distinguisher is deterministic, there
is a one-to-one mapping between attainable transcripts and attainable directionless transcripts.
Let T denote the set of attainable directionless transcripts. Note that the interaction of D
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with some permutation P ∈ Perm(M) produces the directionless transcript τ ′ = (x, y) iff
P (x) = y. Note also that ∑

(x,y)∈T
pE(x, y) =

∑
(x,y)∈T

p∗ = 1.

The output of the distinguisher is a function of the transcript τ , or equivalently of the
directionless transcript τ ′. Let T0 (resp. T1) be the set of attainable directionless transcripts
τ ′ such that D outputs 0 (resp. 1) when obtaining τ ′ = (x, y). Then, by definition of the
advantage,

Adv(D) =
∣∣∣ ∑

(x,y)∈T1

Pr [P ←$ Perm(M) : P (x) = y]−
∑

(x,y)∈T1

Pr [K ←$ K : EK(x) = y]
∣∣∣

=
∣∣∣ ∑

(x,y)∈T1

p∗ − pE(x, y)
∣∣∣

Using the assumption of the lemma, we have∑
(x,y)∈T1

(p∗ − pE(x, y)) ≤
∑

(x,y)∈T1

εp∗ ≤ ε
∑

(x,y)∈T1

p∗ ≤ ε,

and similarly

−
∑

(x,y)∈T1

(p∗ − pE(x, y)) =
∑

(x,y)∈T0

(p∗ − pE(x, y)) ≤
∑

(x,y)∈T0

εp∗ ≤ ε
∑

(x,y)∈T0

p∗ ≤ ε,

from which the result follows. ut

B Proof of the Amplification Theorem for NCPA-Secure Ciphers

Theorem 3. Let E and F be two block ciphers with the same message space M. For any
integer q, one has

Advncpa
F◦E(q) ≤ 2Advncpa

E (q)Advncpa
F (q).

Proof. Fix any q-tuple x ∈ (M)q. By the definition of the statistical distance and Lemma 3,
one has

‖pF◦E,x − p∗‖ = 1
2

∑
y∈(M)q

|pF◦E(x, y)− p∗|

= 1
2

∑
y∈(M)q

∣∣∣∣∣∣
∑

z∈(M)q

(pE(x, z)− p∗)(pF (z, y)− p∗)

∣∣∣∣∣∣
≤ 1

2
∑

y∈(M)q

∑
z∈(M)q

|pE(x, z)− p∗||pF (z, y)− p∗|

≤
∑

z∈(M)q

|pE(x, z)− p∗| × 1
2

∑
y∈(M)q

|pF (z, y)− p∗|

≤
∑

z∈(M)q

|pE(x, z)− p∗| × ‖pF,z − p∗‖
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≤ Advncpa
F (q)

∑
z∈(M)q

|pE(x, z)− p∗|

≤ 2Advncpa
F (q)‖pE,x − p∗‖

≤ 2Advncpa
E (q)Advncpa

F (q).

The result follows by Lemma 1. ut

C An Amplification Theorem for KPA-Security

A distinguisher is said to perform a known-plaintext attack (KPA) if it chooses its q-tuple of
(direct) queries x = (x1, . . . , xq) uniformly at random from (M)q. It is easy to adapt the proof
of Lemma 1 to show that the best advantage of a KPA-distinguisher is exactly the mean of
the statistical distances ‖pE,x − p‖, namely

Advkpa
E (q) = p∗

∑
x∈(M)q

‖pE,x − p∗‖.

A simple example shows that KPA-security does not amplify well by composing. Namely,
consider the family G of all permutations of M that admit 0 as a fixed point (i.e., ∀g ∈
G, g(0) = 0). This allows for a simple distinguisher which simply checks whether (0, 0) appears
among its plaintext/ciphertext pairs, and outputs 1 only when this is the case. Then for any
n ≥ 1, the advantage of this KPA-distinguisher against Gn is at least

q

|M|

(
1− 1
|M|

)
,

which proves that composing does not in general amplify KPA-security. However, we have the
following positive result.

Theorem 4. Let E and F be two block ciphers with the same message space. For any integer
q, one has

Advkpa
F◦E(q) ≤ 2Advkpa

E (q)Advncpa
F (q).

Proof. One has

Advkpa
F◦E(q) = p∗

∑
x∈(M)q

‖pF◦E,x − p∗‖

= p∗
2

∑
x∈(M)q

∑
y∈(M)q

|pF◦E(x, y)− p∗|

= p∗
2

∑
x∈(M)q

∑
y∈(M)q

∣∣∣ ∑
z∈(M)q

(pE(x, z)− p∗)(pF (z, y)− p∗)
∣∣∣

≤ p∗
2

∑
x∈(M)q

∑
y∈(M)q

∑
z∈(M)q

|pE(x, z)− p∗||pF (z, y)− p∗|

≤ p∗
∑

x∈(M)q

∑
z∈(M)q

|pE(x, z)− p∗| × 1
2

∑
y∈(M)q

|pF (z, y)− p∗|
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≤ p∗
∑

x∈(M)q

∑
z∈(M)q

|pE(x, z)− p∗| × ‖pF,z − p∗‖

≤ Advncpa
F (q)× p∗

∑
x∈(M)q

∑
z∈(M)q

|pE(x, z)− p∗|

≤ 2Advncpa
F (q)× p∗

∑
x∈(M)q

‖pE,x − p∗‖

≤ 2Advncpa
F (q)Advkpa

E (q). ut

D Composition of Three Block Ciphers

In this section, we use a dedicated analysis to give a slightly tighter result for the cascade of
three block ciphers than what a direct application of Theorem 2 with n = 3 would yield.

Theorem 5. Let E, F , and G be three block ciphers with the same message spaceM. Denote
εE = Advncpa

E (q), εF = Advncpa
F (q), εF−1 = Advncpa

F−1 (q) and εG−1 = Advncpa
G−1 (q). For any

integer q, one has

Advcca
G◦F◦E(q) ≤ εEεF + εEεG−1 + εF−1εG−1 + min{εEεF , εEεG−1 , εF−1εG−1}.

Proof. Fix any q-tuples x, y ∈ (M)q. From Lemma 5, one has:

pG◦F◦E(x, y) = p∗ +
∑

z,t∈(M)q

(pE(x, z)− p∗)(pF (z, t)− p∗)(pG(t, y)− p∗).

We define the following four subsets of ((M)q)2:

A1 = {(z, t) ∈ ((M)q)2 : (pE(x, z) > p∗) ∧ (pF (z, t) > p∗) ∧ (pG(t, y) < p∗)}
A2 = {(z, t) ∈ ((M)q)2 : (pE(x, z) > p∗) ∧ (pF (z, t) < p∗) ∧ (pG(t, y) > p∗)}
A3 = {(z, t) ∈ ((M)q)2 : (pE(x, z) < p∗) ∧ (pF (z, t) > p∗) ∧ (pG(t, y) > p∗)}
A4 = {(z, t) ∈ ((M)q)2 : (pE(x, z) < p∗) ∧ (pF (z, t) < p∗) ∧ (pG(t, y) < p∗)}

and for i = 1, . . . , 4, we define

Si =
∑

(z,t)∈Ai

(pE(x, z)− p∗)(pF (z, t)− p∗)(pG(t, y)− p∗).

Then
pG◦F◦E(x, y)− p∗ ≥ S1 + S2 + S3 + S4.

We now lower bound each Si in turn. For S1, we have

S1 ≥ −p∗
∑

z,t∈(M)q :
{pE(x,z)>p∗

pF (z,t)>p∗
pG(t,y)<p∗

(pE(x, z)− p∗)(pF (z, t)− p∗)

≥ −p∗
∑

z∈(M)q :pE(x,z)>p∗
|pE(x, z)− p∗|

∑
t∈(M)q :pF (z,t)>p∗

|pF (z, t)− p∗|
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≥ −p∗
∑

z∈(M)q :pE(x,z)>p∗
|pE(x, z)− p∗| × ‖pF,z − p∗‖

≥ −p∗Advncpa
F (q)

∑
z∈(M)q :pE(x,z)>p∗

|pE(x, z)− p∗|

≥ −p∗Advncpa
E (q)Advncpa

F (q).

Similarly, for S2 we have

S2 ≥ −p∗
∑

z,t∈(M)q :
{pE(x,z)>p∗

pF (z,t)<p∗
pG(t,y)>p∗

(pE(x, z)− p∗)(pG(t, y)− p∗)

≥ −p∗
∑

z∈(M)q :pE(x,z)>p∗
|pE(x, z)− p∗|

∑
t∈(M)q :pG(t,y)>p∗

|pG(t, y)− p∗|

≥ −p∗Advncpa
E (q)Advncpa

G−1 (q).

Finally, for S3 we have

S3 ≥ −p∗
∑

z,t∈(M)q :
{pE(x,z)<p∗

pF (z,t)>p∗
pG(t,y)>p∗

(pF (z, t)− p∗)(pG(t, y)− p∗)

≥ −p∗
∑

t∈(M)q :pG(t,y)>p∗
|pG(t, y)− p∗|

∑
z∈(M)q :pF (z,t)>p∗

|pF (z, t)− p∗|

≥ −p∗
∑

t∈(M)q :pG(t,y)>p∗
|pG(t, y)− p∗| × ‖pF−1,t − p∗‖

≥ −p∗Advncpa
F−1 (q)

∑
t∈(M)q :pG(t,y)>p∗

|pG(t, y)− p∗|

≥ −p∗Advncpa
F−1 (q)Advncpa

G−1 (q).

In the case of S4, each strategy used to lower bound S1, S2, or S3 can be used. For example,
with the second strategy:

S4 =
∑

z,t∈(M)q :
{pE(x,z)<p∗

pF (z,t)<p∗
pG(t,y)<p∗

(pE(x, z)− p∗)(pG(t, y)− p∗)︸ ︷︷ ︸
>0

(pF (z, t)− p∗)︸ ︷︷ ︸
<0

≥ −p∗
∑

z,t∈(M)q :
{pE(x,z)<p∗

pF (z,t)<p∗
pG(t,y)<p∗

|pE(x, z)− p∗||pG(t, y)− p∗|

≥ −p∗
 ∑
z∈(M)q :pE(x,z)<p∗

|pE(x, z)− p∗|

 ∑
t∈(M)q :pG(t,y)<p∗

|pG(t, y)− p∗|


≥ −p∗Advncpa

E (q)Advncpa
G−1 (q).
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Since the other two strategies apply as well, we obtain

S4 ≥ max{−p∗εEεF ,−p∗εEεG−1 ,−p∗εF−1εG−1},

which concludes the proof by Lemma 2. ut
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