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Abstract We consider the so-called Encrypted Davies-Meyer (EDM) construc-
tion, which turns a permutation P on {0, 1}n into a function from {0, 1}n to
{0, 1}n defined as P (P (x)⊕ x). A similar construction using two independent
permutations, namely P ′(P (x)⊕ x), was previously analyzed by Cogliati and
Seurin (CRYPTO 2016) who showed that when P and P ′ are secret and random,
then any black-box adversary needs at least roughly 22n/3 queries to distinguish
the construction from a uniformly random function from {0, 1}n to {0, 1}n.
In this paper, we focus on the single-permutation variant of the construction.
Our main result is that the PRF-security of the single-permutation EDM
construction is also (at least) roughly 22n/3, in the sense that any black-box
adversary needs at least this number of queries to distinguish the construction
from a uniformly random function. This yields the first PRP-to-PRF conversion
method which uses a single permutation, does not shrink the original domain
nor range of the permutation, and provides security beyond the birthday bound.
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1 Introduction

PRP-to-PRF Conversion. Block ciphers are ubiquitous in cryptography.
A block cipher takes a key k from some key space K and a plaintext x from
some domain X and returns a ciphertext y ∈ X . For each key k, the mapping
Ek : x 7→ E(k, x) is an (efficiently invertible given the key k) permutation
of X . The standard security notion for a block cipher is that it should be a
pseudorandom permutation (PRP) [GGM86], which means that no adversary
having black-box access to some permutation of X and with limited resources
(oracle queries and computation time) should be able to distinguish with
noticeable advantage whether it is interacting with the block cipher under a
random key k or with a uniformly random permutation of X .

Even though invertibility might seem like a basic requirement when using
a block cipher for encryption, this intuition turns out wrong for many modes
of operation. Consider for example encryption using counter mode [BDJR97]
based on a block cipher with domain X = {0, 1}n: the message to be encrypted
is split into n-bit message blocks mi which are encrypted as yi = mi ⊕ Ek(ci),
where ci is some non-repeating counter. It is well known that this is only secure
as long as at most 2n/2 message blocks are encrypted under the same key.
After that point, the ciphertexts can be distinguished from random by the
adversary (indeed, for uniformly random yi’s, the adversary expects to see
collisions among values yi ⊕mi, whereas this cannot happen for outputs of a
real encryption oracle since yi⊕mi = Ek(ci), where the ci’s are non-repeating).
On the other hand, this problem vanishes if instead of using a PRP, one uses a
pseudorandom function (PRF). As a PRP, a PRF takes as input a key k ∈ K
and a plaintext x ∈ X , and returns a “ciphertext” y in some range Y (which
might be in general different from domain X ). The security requirement is now
that no adversary with oracle access to some function from X to Y should be
able to distinguish whether it interacts with Fk = F (k, ·) for some random
key k or with a uniformly random function from X to Y (as opposed to a
random permutation of X for a PRP). It is easy to see that using a PRF in
counter mode (i.e., encrypting message blocks as yi = mi ⊕ Fk(ci)) yields a
security-preserving encryption mode, in the sense that the advantage of any
adversary against the encryption mode is upper bounded by the advantage
against the PRF itself (the mode itself does not incur any security loss, unlike
when using a PRP).

Another example is the Wegman-Carter MAC construction [WC81], which
relies on a PRF F and an almost-xor universal (AXU) hash function H to
construct a nonce-based message authentication code defined as

WC[F,H](ν,m) = Fk(ν)⊕Hk′(m),

where ν is the nonce (a value which should never repeat) and m is the message
to be authenticated. The Wegman-Carter construction enjoys a very strong
security bound when used with a good PRF and a good AXU hash function (for
n-bit tags, the forgery probability can be close to qf/2n, where qf is the number
of forgery attempts of the adversary, plus a term related to the PRF-security
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of F ). However, if F is replaced by a block cipher, the provable security bound
drops to birthday bound [Sho96,Ber05].

These two examples show that invertibility can become a liability in many
constructions based on block ciphers. Unfortunately, cryptographers have
focused on designing good block ciphers, and efficient and secure PRFs are not
readily available. Hence, a natural question is whether it is possible to turn a
PRP E into a PRF F [E] as efficiently as possible and in a security-preserving
way, meaning that the PRF-advantage of any adversary A against F [E] should
be close to the PRP-advantage of a related adversary A′ with similar resources
against E, without any extra security loss. Note that any PRP E is a secure
PRF, albeit secure only up to the so-called birthday bound, i.e., roughly 2n/2

queries (even when E is secure as a PRP in face of much more than 2n/2

queries). Indeed, at this number of queries, the adversary expects to see (with
good probability) collisions in the outputs of a random function, whereas this
cannot happen when it interacts with a random permutation. This result is
often called the PRP-PRF switching lemma [BR06]. Hence, any PRP-to-PRF
conversion method must at the bare minimum overcome the birthday bound
in order to be of any value.

The converse problem, namely building a PRP from a PRF, has been solved
almost 30 years ago in a celebrated paper by Luby and Rackoff [LR88] using
the 3-round Feistel construction (if one wants a PRP secure against adversary
making two-sided queries to the black-box permutation, this requires four
rounds [LR88,Pat90]). For this reason, the PRP-to-PRF conversion problem is
sometimes called “Luby-Rackoff backwards” [BKR98].

Previous Work. A significant number of constructions have been suggested
to solve the PRP-to-PRF conversion problem. Perhaps the simplest one is
truncation: namely, one drops m bits of the output and simply uses the,
say, n − m leftmost bits of the output of Ek as the output of F [E]k. This
has been analyzed by Hall et al. [HWKS98], who showed that this is secure
up to roughly min{2(n+m)/2, 22(n−m)/3} adversarial queries (this bound was
subsequently improved by Bellare and Impagliazzo [BI99], and recently by
Gilboa et al. [GGM18]). In the same paper [HWKS98], Hall et al. also studied
an inefficient yet security-preserving construction based on ordering the outputs
Ek(1‖x), . . . , Ek(d‖x). Note that these constructions do not preserve the range
(nor the domain for the latter) of the original permutation.

Another option suggested by Bellare, Krovetz, and Rogaway [BKR98] is
to use data-dependent re-keying. In the simple case where the block cipher’s
key space K is equal to its message space X , this construction is defined as
F (k, x) = E(E(k, x), x). This construction enjoys a good security bound (in
particular, beyond birthday), albeit only in the ideal cipher model for E (in
the standard model, security drops to birthday bound).

Another simple method is what we call the XOR construction, which simply
consists in summing the output of r ≥ 2 independent encryptions of the input,
namely, assuming the domain of E is {0, 1}n,

F(k1,...,kr)(x) = Ek1(x)⊕ Ek2(x)⊕ · · · ⊕ Ekr
(x),
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where k1, . . . , kr are independent keys. This construction was first analyzed by
Lucks [Luc00] who showed that it is secure up to roughly 2rn/(r+1) adversarial
queries. At about the same time, Bellare and Impagliazzo [BI99] independently
proved that for r = 2, the advantage is upper bounded by O(n)(q/2n)3/2 (in
other words, security is ensured up to roughly 2n/n2/3 queries). Patarin [Pat08a,
Pat13] proved in two different ways that the construction for r = 2 is already
“optimally” secure, i.e., secure up to approximately 2n adversarial queries. A
slightly worse bound of 2(2r+1)n/(2r+2) queries for the general case (yet with
a sharper threshold) was also proved by Cogliati et al. [CLP14]. The XOR
construction can be slightly tweaked to work with a single key with negligible
security loss by defining what Lucks calls the “TWIN” construction [Luc00],
namely

Fk(x) = Ek(0‖x)⊕ Ek(1‖x)⊕ · · · ⊕ Ek(r − 1‖x).

However this slightly shrinks the domain of the resulting PRF by dlog2(r)e bits.
Recently, Dai et al. [DHT17] gave a tight yet much simpler security proof for
the XOR and the TWIN constructions with r = 2 based on a new technique
called the chi-squared method (see also [BN18]).

The Encrypted Davies-Meyer Construction. A natural idea that comes
to mind to turn a PRP into a PRF is to define Fk(x) = Ek(x)⊕ x. When F is
seen as a 2n-bit to n-bit compression function, this is called the Davies-Meyer
(DM) construction. We will use this terminology here as well, even though our
focus is on pseudorandomness and not hashing. Although the DM construction
breaks the bijectivity of Ek, it is easy to see that this construction is not
more secure as a PRF than E is. Indeed, the adversary can simply compute
Fk(x)⊕ x = Ek(x), and hence apply the standard collision attack.

Recently, Cogliati and Seurin [CS16] proposed a new construction called
Encrypted Davies-Meyer (EDM for short), which simply consists in encrypting
the output of the DM construction with an independent key, namely

Fk,k′(x) = Ek′(Ek(x)⊕ x). (1)

Note that this thwarts the collision attack as the adversary is now unable to
compute Ek(x) from the outputs of Fk,k′ . And indeed, Cogliati and Seurin
actually did prove that this construction is secure up to 22n/3 adversarial
queries (and conjectured that it might actually be secure up to close to 2n
queries). In fact, Cogliati and Seurin were primarily interested in proving the
security of a related MAC construction called Encrypted Wegman-Carter with
Davies-Meyer (EWCDM), which uses an additional AXU hash function H and
computes a tag from a message m and a nonce ν as

EWCDM[E,H]k,k′,k′′(ν,m) = Ek′
(
Ek(ν)⊕ ν ⊕Hk′′(m)

)
. (2)

At the heart of the security proof of this construction as a MAC is a proof that
the construction defined in Equation (1) is a secure PRF.



Analysis of the Single-Permutation Encrypted Davies-Meyer Construction 5

Our Contribution. In this work, we consider the single-key variant of the
construction of Equation (1), which turns a block cipher E with key space K
and domain {0, 1}n into a keyed function EDM[E] from {0, 1}n to {0, 1}n with
the same key space as E defined as

EDM[E]k(x) = Ek(Ek(x)⊕ x). (3)

We prove that the security of this construction is very similar to the one of
the two-key version, namely security is ensured up to at least roughly 22n/3

adversarial queries.1
Observe that since the construction of Equation (3) does not use any form

of data-dependent re-keying, a standard hybrid argument allows to replace
Ek by a uniformly random permutation P (at the cost of a term related to
the PRP-security of E) and to focus on the simpler construction defined,
overloading notation EDM[.], as

EDM[P ](x) = P (P (x)⊕ x). (4)

The problem is now purely information-theoretic, as we now have to upper
bound the advantage of any (even computationally unbounded) adversary in
distinguishing EDM[P ] with a random permutation from a uniformly random
function within q queries. Our proof uses the H-coefficients technique [Pat08b,
CS14]. We remark that the PRF-security of the single-permutation EDM
construction is somehow related to the so-called iterated random permutation
problem recently considered by Minaud and Seurin [MS15], which asks how
many queries are required to distinguish the square P (P (·)) of a random
permutation (or more generally the r-th iterate of a random permutation)
from a uniformly random permutation (the answer proven in [MS15] being
Θ(2n) queries, for any fixed number r of iterations). However, since the EDM
construction breaks the bijectivity of the underlying permutation, the simple
game-based technique from [MS15], which replaces the random permutation
by a random cyclic permutation, does not seem to apply here. Instead, we rely
on a more basic (yet also more cumbersome) counting technique that was used
in the work of Chen et al. [CLL+14] about the single-permutation 2-round
Even-Mansour cipher.

We observe that the single-permutation EDM construction is the first PRP-
to-PRF conversion method achieving all the following properties at the same
time:

(i) it uses a single permutation (i.e., a single key for the underlying PRP);
(ii) it does not use data-dependent re-keying;
(iii) it does not shrink the domain nor the range of the original permutation;
(iv) it is provably secure beyond the birthday bound.

1 Actually the security bound for the single-key version is slightly worse than for the
two-key version since it has a term O(nq/22n/3).
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Related Work. For the XOR construction, a stronger security property
than pseudorandomness, namely indifferentiability from a random function
(which informally means that the construction behaves as a random function
even for an adversary having oracle access to the underlying permutations on
which the construction is based), was also investigated in [MPN10,MP15].

Open Problems. We conjecture that our security bound is not tight. Actually,
we are not aware of any attack requiring o(2n) queries, so that the single-
permutation EDM construction might well be optimally secure. Recently, at
CRYPTO 2017, two independent papers gave security bounds for the EDM
construction with two independent permutations that improve on Cogliati and
Seurin’s bound [CS16]: Dai et al. [DHT17] gave a 3n/4-bit security proof using
a new technique called the chi-squared method, and Mennink and Neves [MN17]
gave an optimal n-bit security proof based on Patarin’s Mirror Theory [Pat10].
Mennink and Neves gave compelling evidence that their technique is unlikely
to be applicable in the single-permutation case. We are not aware of any such
argument for the chi-squared method though.

Another important open problem is to extend our result to the single-key
version of the EWCDM construction of Equation (2), where the same key
k is used for both calls to the block cipher (the hashing key k′′ remaining
independent from k). As explained in [CS16], it seems difficult to build on
the PRF-security of the EDM construction to prove in a black-box way the
MAC-security of the EWCDM construction. For now, we have been unable
to extend the current (already cumbersome) counting used for the proof of
the single-permutation EDM construction to the more complicated case of
single-key EWCDM.

Organization. We start with basic notation and definitions in Section 2. In
Section 3, we prove a technical “sum-capture” result which will be useful for
our main theorem. Finally, in Section 4, we prove our main theorem about the
security of the single-permutation EDM construction.

2 Preliminaries

Basic Notation. For non-empty sets X and Y, the set of all functions from
X to Y is denoted Func(X ,Y), and the set of all permutations of X is denoted
Perm(X ). The set of binary strings of length n is denoted {0, 1}n. The set of
all functions from {0, 1}n to {0, 1}n is simply denoted Func(n), and the set of
all permutations of {0, 1}n is simply denoted Perm(n). For integers 1 ≤ b ≤ a,
we will write (a)b = a(a− 1) · · · (a− b+ 1) and (a)0 = 1 by convention. Given
a non-empty set X , we denote x ←$ X the draw of an element x from X
uniformly at random. Note that the probability that a random permutation
P ←$ Perm(n) satisfies q equalities P (xi) = yi for distinct xi’s and distinct
yi’s is exactly 1/(2n)q.
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PRFs and PRPs. A keyed function with key space K, domain X , and range
Y is a function F : K×X → Y . We denote Fk(x) for F (k, x). A (q, t)-adversary
against F is an algorithm A with oracle access to a function from X to Y,
making at most q oracle queries, running in time at most t, and outputting a
single bit. The advantage of A in breaking the PRF-security of F is defined as

AdvPRF
F (A) =

∣∣Pr
[
k ←$ K : AFk = 1

]
− Pr

[
R←$ Func(X ,Y) : AR = 1

]∣∣ .
A block cipher with key space K and domain X is a mapping E : K×X → X

such that for any key k ∈ K, x 7→ E(k, x) is a permutation of X . We denote
Ek(x) for E(k, x). A (q, t)-adversary against E is an algorithm A with oracle
access to a permutation of X , making at most q oracle queries, running in time
at most t, and outputting a single bit. The advantage of A in breaking the
PRP-security of E is defined as

AdvPRP
E (A) =

∣∣Pr
[
k ←$ K : AEk = 1

]
− Pr

[
P ←$ Perm(X ) : AP = 1

]∣∣ .
3 Yet Another Sum-Capture Lemma

In the section we prove a technical result that will be needed in the proof of
our main theorem. It is a “sum-capture” type result, meaning it upper bounds
the quantity

max
A,B

|A|=|B|=|Y |

|{(y, a, b) ∈ Y ×A×B : y = a⊕ b}|

for a random subset Y of {0, 1}n (or more generally of an abelian group).
This kind of result typically considers a set Y drawn at random without
replacement [Bab89,Ste13]. The lemma below considers the case where Y is
sampled at random with replacement (i.e., Y is a multiset), which is what we
will need later.

For any multiset Y ∗ with elements in {0, 1}n and any two subsets A and B
of {0, 1}n, let

µ(Y ∗, A,B) = |{(y, a, b) ∈ Y ∗ ×A×B : y = a⊕ b}|

and let
µ(Y ∗) = max

A,B
|A|=|B|=|Y ∗|

µ(Y ∗, A,B).

Lemma 1 Let Y ∗ be a multiset of q ≥ 1 uniformly random and independently
chosen elements of {0, 1}n. Then

Pr
[
µ(Y ∗) ≥ q3

2n + q
√

3nq
]
≤ 2

2n .
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Proof. We recall some useful results on Fourier analysis on Zn2 in Appendix A.
Let A and B be any two subsets of size q of {0, 1}n. For any subset S ⊂ {0, 1}n,
we denote 1S : {0, 1}n → {0, 1} the characteristic function of S. Note that
some values may be repeated several times in Y ∗. We denote δY ∗ : {0, 1}n → N
the function that counts the multiplicity of a value in Y ∗. Then one has

µ(Y ∗, A,B) =
∑

y,a∈{0,1}n

δY ∗(y)1A(a)1B(y ⊕ a)

=
∑

y∈{0,1}n

δY ∗(y)(1A ∗ 1B)(y)

= 2n
∑

α∈{0,1}n

δ̂Y ∗(α) ̂(1A ∗ 1B)(α)

= 22n
∑

α∈{0,1}n

δ̂Y ∗(α)1̂A(α)1̂B(α)

= 22nδ̂Y ∗(0)1̂A(0)1̂B(0) + 22n
∑
α6=0

δ̂Y ∗(α)1̂A(α)1̂B(α).

Note that, for any subset S of {0, 1}n one has 1̂S(0) = |S|
2n and

δ̂Y ∗(0) = 1
2n

∑
x∈{0,1}n

δY ∗(x)(−1)0·x

= 1
2n

∑
x∈{0,1}n

δY ∗(x)

= q

2n .

Thus

µ(Y ∗, A,B) = q3

2n + 22n
∑
α 6=0

δ̂Y ∗(α)1̂A(α)1̂B(α)

≤ q3

2n + 22n
∑
α 6=0
|δ̂Y ∗(α)| · |1̂A(α)| · |1̂B(α)|

≤ q3

2n + 2nΦ(Y ∗)
∑
α6=0
|1̂A(α)| · |1̂B(α)|,

where
Φ(Y ∗) = max

α6=0

{
2n|δ̂Y ∗(α)|

}
.

By Cauchy-Schwarz, and using the fact that, for any subset S ⊆ {0, 1}n,∑
α∈{0,1}n

|1̂S(α)|2 = |S|2n ,
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we get

µ(Y ∗, A,B) ≤ q3

2n + 2nΦ(Y ∗)
√ ∑
α∈{0,1}n

|1̂A(α)|2 ·
√ ∑
α∈{0,1}n

|1̂B(α)|2

≤ q3

2n + Φ(Y ∗)
√
|A| · |B|

≤ q3

2n + q · Φ(Y ∗).

Since this holds for any subsets A and B, it follows that

µ(Y ∗) ≤ q3

2n + q · Φ(Y ∗),

which implies

Pr
[
µ(Y ∗) ≥ q3

2n + q
√

3nq
]
≤ Pr

[
Φ(Y ∗) ≥

√
3nq
]
.

Denote Y ∗ = {y1, . . . , yq} using an arbitrary order. Then one has

Φ(Y ∗) = max
α6=0

{
2n|δ̂Y ∗(α)|

}
= max

α6=0


∣∣∣∣∣∣
∑

x∈{0,1}n

δY ∗(x)(−1)α·x
∣∣∣∣∣∣


= max
α6=0


∣∣∣∣∣∣
∑

x∈{0,1}n

q∑
i=1

1{yi}(x)(−1)α·x
∣∣∣∣∣∣


= max
α6=0

{∣∣∣∣∣
q∑
i=1

(−1)α·yi

∣∣∣∣∣
}
.

For α 6= 0, let us denote A
(α)
i = (−1)α·yi and A(α) =

∑q
i=1 A

(α)
i . Then

Φ(Y ∗) = max
α 6=0
{|A(α)|}. The random variable A(α) is the sum of q independent

random variables A(α)
i such that Pr

[
A

(α)
i = 1

]
= Pr

[
A

(α)
i = −1

]
= 1

2 . The
Chernoff bound tailored to this special case [MU05, Corollary 4.8] gives us, for
any a > 0,

Pr
[
|A(α)| ≥ a

]
≤ 2e

−a2
2q .

If we take a =
√

3nq > 0, then

Pr
[
|A(α)| ≥

√
3nq
]
≤ 2e

−a2
2q = 2e−3n/2 ≤ 2

22n
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since e3/4 ≥ 2. Finally, one has

Pr
[
µ(Y ∗) ≥ q3

2n + q
√

3nq
]
≤ Pr

[
max
α 6=0
{|A(α)|} ≥

√
3nq
]

≤
∑
α 6=0

Pr
[
|A(α)| ≥

√
3nq
]

≤ 2
2n .

4 The Encrypted Davies-Meyer Construction With a Single
Permutation

4.1 Statement of the Result and Overview of the Proof

In this section, we consider the Encrypted Davies-Meyer construction

EDM[P ](x) = P (P (x)⊕ x),

where P is a random permutation of {0, 1}n. Cogliati and Seurin [CS16]
previously considered a similar construction with two independent permutations,
namely P ′(P (x) ⊕ x), and proved that it was a secure PRF up to roughly
22n/3 adversarial queries. Here, we prove that the single-permutation variant is
also secure up to roughly 22n/3 adversarial queries. More precisely, one has the
following theorem.

Theorem 1 Assume that n ≥ 9 and q ≤ 2n/8. Let A be an adversary with
oracle access to a function from {0, 1}n to {0, 1}n, making at most q oracle
queries, and returning a single bit. Then its advantage Adv(A) in distinguishing
the EDM construction from a uniformly random function, defined as∣∣∣Pr

[
P ←$ Perm(n) : AEDM[P ] = 1

]
− Pr

[
R←$ Func(n) : AR = 1

]∣∣∣ ,
satisfies:

Adv(A) ≤ 36q
22n/3 + 8

√
3nq

2n/3 + 2
2n .

As a straightforward corollary, we obtain the following for the corresponding
keyed construction.

Corollary 1 Let E be a block cipher with key space K and domain {0, 1}n. Let
EDM[E] be the keyed function defined by Equation (3). Assume that n ≥ 9 and
q ≤ 2n/8. Then for any (q, t)-adversary against the PRF-security of EDM[E],
there exists a (2q, t′)-adversary against the PRP-security of E with t′ = t+O(q),
such that

AdvPRF
EDM[E](A) ≤ AdvPRP

E (A′) + 36q
22n/3 + 8

√
3nq

2n/3 + 2
2n .
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The remaining of the paper is devoted to the proof of Theorem 1. First of
all, remark that the result is trivial if q > 22n/3. Hence we are going to assume
that q ≤ 22n/3, which implies that

q3

22n ≤
q2

24n/3 ≤
q3/2

2n ≤
q

22n/3 . (5)

The proof uses the H-coefficients technique [Pat08b,CS14]: the real world cor-
responds to EDM[P ], while the ideal world corresponds to R. Fix an adversary
A making q oracle queries, and consider the transcript τ of the queries x of
the adversary and corresponding answers y: more precisely, τ contains a pair
(x, y) ∈ ({0, 1}n)2 iff the adversary made an oracle query x that was answered
with y (as usual for stateless oracles, the order of the queries is unimportant
for the reasoning). In the following, we sometimes refer to a pair (x, y) ∈ τ
simply as a query. We denote

X = {x : (x, y) ∈ τ},
Y = {y : (x, y) ∈ τ}.

Note that |X| = q, assuming wlog that the adversary never repeats a query. On
the other hand, there might be collisions among oracle answers. We say that
a query (x, y) ∈ τ is colliding if there exists a distinct query (x′, y′) ∈ τ such
that y = y′, otherwise we say it is non-colliding. We denote Y ∗ the multiset of
all oracle answers (i.e., oracle answers counted with multiplicity).

We say that a transcript is attainable if there exists a function R ∈ Func(n)
such that A interacting with R results in transcript τ . We denote Θ the set of
attainable transcripts. We also denote Tre, resp. Tid, the probability distribution
of the transcript τ induced by the real world, resp. the ideal world.

The main lemma of the H-coefficients technique is the following one (see
e.g. [CS14] or [CLL+14] for the proof).

Lemma 2 Fix an adversary A. Let Θ = Θgood t Θbad be a partition of the
set of attainable transcripts. Assume that there exists ε1 such that for any
τ ∈ Θgood, one has2

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Θbad] ≤ ε2. Then Adv(A) ≤ ε1 + ε2.

4.2 Definition and Probability of Bad Transcripts

In all the following, we let
M = q

2n/3 . (6)

Note that, assuming n ≥ 9, one has

q − 3M ≥ q

2 . (7)

2 Recall that for an attainable transcript, one has Pr[Tid = τ ] > 0.
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We define bad transcripts as follows.

Definition 1 We say that an attainable transcript τ is bad if one of the
following conditions is fulfilled:

(i) the number of colliding queries is larger than M ;
(ii) then number α(τ) of triples (y, x, x′) ∈ Y ∗ ×X ×X such that y = x⊕ x′

is larger than q3/2n + q
√

3nq.

Otherwise, we say that τ is good. We denote Θbad, resp. Θgood, the set of bad,
resp. good transcripts.

We start by upper bounding the probability to get a bad transcript in the
ideal world.

Lemma 3 One has

Pr [Tid ∈ Θbad] ≤ q

22n/3 + 2
2n .

Proof. We first consider condition (i). Since in the ideal world the oracle
answers y are uniformly random and independent, the expected number of
colliding queries is lower than q2/2n. If we denote C the random variable
defined as the number of colliding queries, then, by Markov’s inequality,

Pr [C ≥M ] ≤ q2

M2n = q

22n/3 .

We now consider condition (ii). Note that one has α(τ) = µ(Y ∗, X,X) ≤ µ(Y ∗)
(see Section 3 for the definition of µ). Since in the ideal world, Y ∗ is a multiset
of uniformly random and independent values, using Lemma 1, one has

Pr
[
α(τ) ≥ q3/2n + q

√
3nq
]
≤ Pr

[
µ(Y ∗) ≥ q3/2n + q

√
3nq
]
≤ 2

2n .

The result follows by the union bound.

4.3 Analysis of Good Transcripts

From now on, we fix a good transcript τ . We need to lower bound the probability
to obtain τ in the real world. As usual, this probability is exactly the probability
that the real oracle be “compatible” with the transcript (see e.g. [CS14]), i.e.,

Pr [Tre = τ ] = Pr [P ←$ Perm(n) : ∀(x, y) ∈ τ, P (P (x)⊕ x) = y] .

In all the following, we let
r = |Y |

be the number of distinct oracle answers appearing in the transcript and

s = |{(x, y) ∈ τ : ∀(x′, y′) ∈ τ \ {(x, y)}, y′ 6= y}|
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be the number of non-colliding queries. Recall that α(τ) denotes the number
of triples (y, x, x′) ∈ Y ∗ ×X ×X such that y = x⊕ x′. Since the transcript is
good, one has

q ≥ s ≥ q −M (8)

α(τ) ≤ q3

2n + q
√

3nq. (9)

As just explained, in order to lower bound the probability of obtaining τ in
the real world, we need to lower bound the number of permutations P such
that

∀(x, y) ∈ τ, P (P (x)⊕ x) = y. (10)

What makes this counting hard is that these equalities are not “independent”.
E.g., if there exists two queries (x, y) and (x′, y′) in τ such that P (x)⊕ x = x′,
then one must have P (x′) = y. Similarly, if P (x) = y′, then one must have
P (x′)⊕ x′ = x. One could count only permutations P such that for any query
(x, y) ∈ τ , P (x) ⊕ x /∈ X ∪ Y , however this only leads to a birthday bound.
Hence, to get a bound beyond the birthday bound, we will need a more precise
counting. As we will see now, it will be sufficient to consider permutations P
such that P (x) ⊕ x = x′ for t pairs ((x, y), (x′, y′)) of distinct non-colliding
queries, for t in some sufficiently large range. However, we must ensure that
the choice of these t pairs does not create constraints incompatible with other
queries in the transcript. To this end, we introduce the following definition.

Definition 2 An unordered set of t (ordered) pairs of distinct non-colliding
queries

Σ = {((x1, y1), (x′1, y′1)), . . . , ((xt, yt), (x′t, y′t))}

is said good if the following conditions are fulfilled:

(a) for all i ∈ {1, . . . , t}, yi ⊕ x′i /∈ X;
(b) for all i ∈ {1, . . . , t}, xi ⊕ x′i /∈ Y ;
(c) all values yi ⊕ x′i, i ∈ {1, . . . , t}, are distinct;
(d) all values xi ⊕ x′i, i ∈ {1, . . . , t}, are distinct.

Then we have the following lemma, which shows that the number of good
sets Σ is close to (s)2t/t!, the total number of unordered sets of t pairs of
non-colliding queries. (Recall that s denotes the number of non-colliding queries
in τ .)

Lemma 4 Fix an integer t such that 0 ≤ t ≤M . Then the number NΣ(t) of
good sets Σ of t pairs of non-colliding queries is at least

NΣ(t) ≥ (s)2t

t!

(
1− 12q

22n/3 −
8
√

3nq
2n/3

)
.
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Proof. First, observe that among the s(s− 1) possible pairs of non-colliding
queries, at most 2α(τ) of them do not satisfy conditions (a) and (b). Indeed, by
definition of a good transcript (more precisely, condition (ii)), there cannot be
more than α(τ) pairs ((x, y), (x′, y′)) such that y ⊕ x′ ∈ X, and there cannot
be more than α(τ) pairs ((x, y), (x′, y′)) such that x⊕ x′ ∈ Y . Hence, we can
lower bound NΣ(t) as follows:
– we can choose ((x1, y1), (x′1, y′1)) among at least s(s−1)−2α(τ) possibilities;
– once ((x1, y1), (x′1, y′1)) is fixed, we can choose (x2, y2) freely from the

remaining (s− 2) possibilities; then, (x′2, y′2) must be different from (x1, y1),
(x′1, y′1), and (x2, y2), and must be such that x′2 6= y2 ⊕ y1 ⊕ x′1 in order to
satisfy (c), and such that x′2 6= x2 ⊕ x1 ⊕ x′1 in order to satisfy (d), which
removes at most two possibilities since all queries made by the distinguisher
are distinct; hence, overall there are at least (s− 5) possibilities for (x′2, y′2);
after removing the at most 2α(τ) pairs of queries not satisfying (a) and
(b), there remains at least (s− 2)(s− 5)− 2α(τ) possibilities for the pair
((x2, y2), (x′2, y′2));

– assume ((x1, y1), (x′1, y′1)), . . . , ((xi−1, yi−1), (x′i−1, y
′
i−1)) have been chosen;

we can choose (xi, yi) freely from the (s−2i+2) remaining possibilities; then,
(x′i, y′i) must be different from (x1, y1), (x′1, y′1), . . . , (xi−1, yi−1),(x′i−1, y

′
i−1),

and (xi, yi); moreover, it must be such that x′i 6= yi ⊕ yj ⊕ x′j for all
j ∈ {1, . . . , i− 1} in order to satisfy (c), and such that x′i 6= xi ⊕ xj ⊕ x′j
for all j ∈ {1, . . . , i− 1} in order to satisfy (d); overall, there are at least
(s− 4i+ 3) possibilities for (x′i, y′i); after removing the at most 2α(τ) pairs
not satisfying (a) and (b), there remains at least (s−2i+2)(s−4i+3)−2α(τ)
possibilities for the pair ((xi, yi), (x′i, y′i)).

Since we consider an unordered set of t pairs, the number NΣ(t) of good sets
Σ is at least

NΣ(t) ≥ 1
t!

t−1∏
i=0

(
(s− 2i)(s− 4i− 1)− 2α(τ)

)
.

Then

NΣ(t) ≥ (s)2t

t!

t−1∏
i=0

(s− 2i)(s− 4i− 1)− 2α(τ)
(s− 2i)(s− 2i− 1)

≥ (s)2t

t!

t−1∏
i=0

(
1− 2si− 4i2 + 2α(τ)

(s− 2i)(s− 2i− 1)

)

≥ (s)2t

t!

(
1−

t−1∑
i=0

2si− 4i2 + 2α(τ)
(s− 2i)(s− 2i− 1)

)

≥ (s)2t

t!

(
1−

t−1∑
i=0

2si+ 2α(τ)
(s− 2M)2

)

≥ (s)2t

t!

(
1− sM2 + 2α(τ)M

(s− 2M)2

)
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≥ (s)2t

t!

(
1− qM2 + 2α(τ)M

(q − 3M)2

)
by Equation (8)

≥ (s)2t

t!

(
1− 4qM2 + 8α(τ)M

q2

)
by Equation (7)

≥ (s)2t

t!

(
1− 4q

22n/3 −
8α(τ)
q2n/3

)
by Equation (6)

≥ (s)2t

t!

(
1− 4q

22n/3 −
8q2

24n/3 −
8
√

3nq
2n/3

)
by Equation (9)

≥ (s)2t

t!

(
1− 12q

22n/3 −
8
√

3nq
2n/3

)
by Equation (5),

as claimed.

From now on, we fix some integer t such that 0 ≤ t ≤M and some good
set of t pairs of non-colliding queries

Σ = {((x1, y1), (x′1, y′1)), . . . , ((xt, yt), (x′t, y′t))}.

We will lower bound the number of permutations P satisfying Equation (10)
such that for any i ∈ {1, . . . , t}, P (xi)⊕xi = x′i. Note that such a permutation
satisfies Equation (10) for the 2t queries appearing in Σ iff

∀i ∈ {1, . . . , t},

P (xi) = xi ⊕ x′i
P (x′i) = yi
P (yi ⊕ x′i) = y′i.

(11)

This set of 3t equalities is “satisfiable” in the sense that all inputs, resp. outputs,
are distinct by conditions (a) and (c), resp. (b) and (d), characterizing a good
set Σ (and also since all xi’s are distinct by assumption, and all yi’s are distinct
for non-colliding queries). In the following, we denote

X ′ = X ∪ {yi ⊕ x′i : i ∈ {1, . . . , t}},
Y ′ = Y ∪ {xi ⊕ x′i : i ∈ {1, . . . , t}}.

Note that |X ′| = q + t and |Y ′| = r + t.
It remains to consider the q − 2t queries (u, v) ∈ τ not appearing in Σ. Let

q′ = q − 2t
r′ = r − 2t
s′ = s− 2t

be respectively the number of these queries, the number of distinct oracle
answers appearing in these queries, and the number of such queries that are
non-colliding. We group these remaining queries so that all queries with the
same output are consecutive, and write them as

τ ′ =
(
(u1,1, v1), . . . , (u1,q1 , v1),
. . . ,

(ur′,1, vr′), . . . , (ur′,qr′ , vr′)
)
,
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where v1, . . . , vr′ are distinct and
∑r′

i=1 qi = q′. In order to ease computations
later, we also assume that we ordered the queries so that non-colliding queries
come first, i.e., qi = 1 for i ∈ {1, . . . , s′} and qi > 1 for i ∈ {s′ + 1, . . . , r′}.
Note that since the transcript is good, one has

r − s = r′ − s′ ≤
r′∑

i=s′+1
qi ≤M = q

2n/3 (12)

where the second inequality holds as otherwise condition (i) of a bad transcript
would be fulfilled.

Our goal is now to lower bound the number of permutations P which, in
addition to satisfying Equation (11), also satisfies

∀(u, v) ∈ τ ′, P (P (u)⊕ u) = v.

For this, we will consider all possible “intermediate” values zi = P−1(vi).
Formally, we need the definition below.

Definition 3 A tuple of r′ values z = (z1, . . . , zr′) is said good if all zi’s
are distinct and outside X ′, and all values zi ⊕ ui,j for i ∈ {1, . . . , r′} and
j ∈ {1, . . . , qi} are distinct and outside Y ′.

Note that for any good tuple z = (z1, . . . , zr′), the set of equalities{
∀i ∈ {1, . . . , r′}, ∀j ∈ {1, . . . , qi}, P (ui,j) = zi ⊕ ui,j
∀i ∈ {1, . . . , r′}, P (zi) = vi

(13)

is “satisfiable” and “compatible” with equalities of Equation (11) in the sense
all inputs, resp. all outputs appearing in equalities of Equation (11) and
Equation (13) are distinct by definition of a good set Σ and a good tuple z.
Moreover, a permutation P satisfying Equation (13) is such that P (P (u)⊕u) =
v for all (u, v) ∈ τ ′.

We will now prove in the lemma below that the number of good tuples z is
close to (2n − q− r− 2t)s′(2n)r′−s′ . The rather complicated form of the bound
will simplify computations later. Note that the term

s′−1∏
i=0

(
1− i

2n − 3q − i

)
in the lower bound of this lemma is a “birthday” term since s′ ∼ q, however
we will be able to cancel it with another term later.

Lemma 5 Fix t and Σ as above. Then the number Nz(t) of good tuples z is
at least

Nz(t) ≥ (2n − q − r − 2t)s′(2n)r
′−s′

(
1− 4q

22n/3

) s′−1∏
i=0

(
1− i

2n − 3q − i

)
.
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Proof. Recall that |X ′| = q + t and |Y ′| = r + t. We will lower bound Nz(t) as
follows:

– z1 must be such that z1 6∈ X ′ and z1 ⊕ u1,j 6∈ Y ′, which leaves at least
2n − q − t− q1(r + t) possibilities for z1;

– once z1 is fixed, there are at least 2n− q− t− 1− q2(r+ t+ q1) possibilities
for z2, since z2 must be different from z1 and from z1 ⊕ u1,j ⊕ u2,j′ for
all j ∈ {1, . . . , q1} and all j′ ∈ {1, . . . , q2}; we also want z2 6∈ X ′ and
z2 ⊕ u2,i 6∈ Y ′ for all i ∈ {1, . . . , q2};

– once z1 and z2 are fixed, there are at least 2n− q− t− 2− q3(r+ t+ q1 + q2)
possibilities for z3, since z3 must be different from z1, z2, z1 ⊕ u1,j ⊕ u3,j′

for all j ∈ {1, . . . , q1} and all j′ ∈ {1, . . . , q3}, and from z2 ⊕ u2,j ⊕ u3,j′

for all j ∈ {1, . . . , q2} and all j′ ∈ {1, . . . , q3}; we also want z3 6∈ X ′ and
z3 ⊕ u3,i 6∈ Y ′ for all i ∈ {1, . . . , q3};

– etc.

Hence, the number of good tuples z is at least

Nz(t) ≥
r′−1∏
i=0

2n − q − t− i− qi+1

r + t+
i∑

j=1
qj

 .

We will further lower bound this quantity by separating terms corresponding
to non-colliding queries (0 ≤ i ≤ s′ − 1) for which qi = 1 and colliding queries
(s′ ≤ i ≤ r′ − 1). We have

Nz(t) ≥
s′−1∏
i=0

2n − q − t− i− qi+1

r + t+
i∑

j=1
qj


×
r′−1∏
i=s′

2n − q − t− i− qi+1

r + t+
i∑

j=1
qj


≥
s′−1∏
i=0

(2n − q − r − 2t− 2i)︸ ︷︷ ︸
Nz,1(t)

r′−1∏
i=s′

(2n − 2q − 2qqi+1)︸ ︷︷ ︸
Nz,2(t)

,

where for s′ ≤ i ≤ r′ − 1 we used that

q + t+ i ≤ q + t+ r′ − 1 = q + r − t− 1 ≤ 2q

and r + t+
i∑

j=1
qj ≤ r + t+ q′ = r + q − t ≤ 2q.
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Moreover,

Nz,1(t)
(2n − q − r − 2t)s′

=
s′−1∏
i=0

(
2n − q − r − 2t− 2i
2n − q − r − 2t− i

)

=
s′−1∏
i=0

(
1− i

2n − q − r − 2t− i

)

≥
s′−1∏
i=0

(
1− i

2n − 3q − i

)
,

where for the last inequality we used that r ≤ q and 2t ≤ 2M = 2q/2n/3 ≤ q,
and

Nz,2(t)
(2n)r′−s′ =

r′−1∏
i=s′

(
2n − 2q − 2qqi+1

2n

)

≥
r′−1∏
i=s′

(
1− 4qqi+1

2n

)

≥ 1−
4q
∑r′

i=s′ qi+1

2n

≥ 1− 4q3/2

2n by Equation (12)

≥ 1− 4q
22n/3 by Equation (5),

which concludes the proof.

We are now ready to wrap up the counting and prove the following result.

Lemma 6 Assume n ≥ 9 and q ≤ 2n/8. Then for any good transcript τ , one
has

Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− 35q

22n/3 −
8
√

3nq
2n/3 .

Proof. For each integer t with 0 ≤ t ≤M , each possible choice of good set Σ
of t pairs of non-colliding queries, and each possible choice of good tuple z, the
probability that a random permutation P satisfies equalities of Equation (11)
and Equation (13) (which implies that it satisfies Equation (10)) is exactly

1
(2n)q+r′+t

.

Indeed, there are exactly 3t equalities in Equation (11) and exactly q′ + r′ =
q − 2t+ r′ equalities in Equation (13), hence q + r′ + t equalities in total to
satisfy, and these equalities are “compatible” by the very definition of a good
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set Σ and a good tuple z. Summing over t, Σ, and z, we obtain that the
probability to get the transcript τ in the real world satisfies

Pr [Tre = τ ] ≥
∑

0≤t≤M

NΣ(t)Nz(t)
(2n)q+r′+t

.

Since the probability to obtain τ in the ideal world is simply 1/(2n)q, the ratio
of probabilities is at least

ρ
def= Pr [Tre = τ ]

Pr [Tid = τ ] ≥
∑

0≤t≤M

(2n)qNΣ(t)Nz(t)
(2n)q+r′+t

.

Injecting successively Lemma 4 and Lemma 5 in this inequality, one has

ρ ≥
(

1− 12q
22n/3 −

8
√

3nq
2n/3

) ∑
0≤t≤M

(s)2t(2n)qNz(t)
t!(2n)q+r′+t

≥
(

1− 12q
22n/3 −

8
√

3nq
2n/3

)(
1− 4q

22n/3

)

×
∑

0≤t≤M

(s)2t(2n)q(2n − q − r − 2t)s′(2n)r′−s′

t!(2n)q+r′+t

s′−1∏
i=0

(
1− i

2n − 3q − i

)
.

Since

(2n)q+r′+t = (2n)q(2n − q)r′−s′(2n − q − r′ + s′)s′+t
= (2n)q(2n − q)r′−s′(2n − q − r + s)s′+t,

we get

ρ ≥
(

1− 16q
22n/3 −

8
√

3nq
2n/3

)
(2n)q

(2n)q

s′−1∏
i=0

(
1− i

2n − 3q − i

)
︸ ︷︷ ︸

A

(2n)r′−s′

(2n − q)r′−s′︸ ︷︷ ︸
≥1

×
∑

0≤t≤M

(s)2t(2n − q − r − 2t)s′
t!(2n − q − r + s)s′+t︸ ︷︷ ︸

B

. (14)

We will now lower bound A and B. For A, we have

A =
q−1∏
i=0

(
1 + i

2n − i

) s′−1∏
i=0

(
1− i

2n − 3q − i

)

≥
q−1∏
i=0

(
1 + i

2n − i

)(
1− i

2n − 3q − i

)

=
q−1∏
i=0

(
1− 3qi+ i2

(2n − i)(2n − 3q − i)

)
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≥
q−1∏
i=0

(
1− 4qi

(2n − q)(2n − 4q)

)
≥ 1− 4q · q2/2

(7 · 2n/8)(2n/2) (q ≤ 2n/8)

≥ 1− 5q
22n/3 by Equation (5). (15)

In order to lower bound B, we are going to appeal to a trick previously
used in [CLL+14] and use the fact that the terms of this sum are close to the
hypergeometric distribution. This is a discrete probability distribution which
describes the probability of k successes in u draws without replacement, from
a finite population of U elements that contains exactly K “good” elements and
exactly U −K “bad” ones. The probability that exactly k elements are drawn
from the set of K “good” elements is thus

HypU,K,u(k) =
(
K
k

)(
U−K
u−k

)(
U
u

) = (u)k(K)k(U −K)u−k
k!(U)u

.

The mean of the distribution HypU,K,u is uK/U . Since

Hyp2n−q,s,s(t) = (s)t(s)t(2n − q − s)s−t
t!(2n − q)s

= (s)t(s)t(2n − q − s)s′+t
t!(2n − q)s′+2t

,

we can rewrite B as∑
0≤t≤M

(s)2t

(s)t(s)t︸ ︷︷ ︸
C

· (2n − q)s′+2t(2n − q − r − 2t)s′
(2n − q − s)s′+t(2n − q − r + s)s′+t︸ ︷︷ ︸

D

·Hyp2n−q,s,s(t). (16)

We are now going to lower bound C and D independently from t and then
lower bound B using Markov’s inequality. First, for any t with 0 ≤ t ≤M ,

C = (s)2t

(s)t(s)t
≥ (s− 2M)2t

s2t ≥ 1− 4tM
s

≥ 1− 4M2

q −M
by Equation (8)

≥ 1− 8M2

q
by Equation (7)

= 1− 8q
22n/3 by Equation (6). (17)

For D, one has

D = (2n − q)s′+t(2n − q − s′ − t)t(2n − q − r − 2t)s′
(2n − q − s)t(2n − q − s− t)s′(2n − q − r + s)s′+t

= (2n − q)s′+t
(2n − q − r + s)s′+t︸ ︷︷ ︸

≥1

· (2
n − q − s+ t)t
(2n − q − s)t︸ ︷︷ ︸

≥1

· (2
n − q − r − 2t)s′

(2n − q − s− t)s′
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≥
s′−1∏
i=0

2n − q − r − 2t− i
2n − q − s− t− i

=
s′−1∏
i=0

(
1− r − s+ t

2n − q − s− t− i

)
≥ 1− s′(r − s+M)

2n − 3q

≥ 1− 2qM
2n − 3q by Equation (12) and s′ ≤ q

≥ 1− 4q2

24n/3 by Equation (6) and 3q ≤ 2n/2

≥ 1− 4q
22n/3 by Equation (5). (18)

Since the mean of the hypergeometric distribution Hyp2n−q,s,s is s2

2n−q , we
have ∑

t>M

Hyp2n−q,s,s(t) ≤
s2

M(2n − q) ≤
2q2

M2n = 2q
22n/3

using successively Markov’s inequality, q ≤ 2n/2, and Equation (6). It follows
that ∑

0≤t≤M
Hyp2n−q,s,s(t) ≥ 1− 2q

22n/3 .

Combining this with Equation (16), Equation (17), and Equation (18), we get

B ≥
(

1− 8q
22n/3

)(
1− 4q

22n/3

) ∑
0≤t≤M

HypN−q,s,s(t) ≥ 1− 14q
22n/3 . (19)

Combining Equation (14), Equation (15), and Equation (19), we finally
obtain

ρ ≥ 1− 35q
22n/3 −

8
√

3nq
2n/3 , (20)

as claimed.

4.4 Concluding the Proof

We are now ready to complete the proof of Theorem 1. Combining Lemma 2,
Lemma 3, and Lemma 6, we obtain that the distinguishing advantage of any
adversary is at most

36q
22n/3 + 8

√
3nq

2n/3 + 2
2n .
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A Basics of Discrete Fourier Analysis

We recall some classical results on Fourier analysis over the abelian group Zn2 , taken
from [CLL+14]. In the following, given a subset S ⊂ {0, 1}n, we denote 1S : {0, 1}n → {0, 1}
the characteristic functions of S, namely 1S(x) = 1 if x ∈ S and 1S(x) = 0 if x /∈ S. Given
two functions f, g : {0, 1}n → R, we denote

〈f, g〉 = E[fg] =
1

2n
∑

x∈{0,1}n

f(x)g(x)
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the inner product of f and g, and, for all x ∈ {0, 1}n, we denote

(f ∗ g)(x) =
∑

y∈{0,1}n

f(y)g(x⊕ y)

the convolution of f and g. Given α ∈ {0, 1}n, we denote χα : {0, 1}n → {±1} the character
associated with α defined as

χα(x) = (−1)α·x.
The all-one character χ0 is called the principal character. All other characters χ 6= 1
corresponding to α 6= 0 are called non-principal characters. The set of all characters
forms a group for the pointwise product operation (χαχβ)(x) = χα(x)χβ(x) and one has
χαχβ = χα⊕β .

Given a function f : {0, 1}n → R and α ∈ {0, 1}n, the Fourier coefficient of f corre-
sponding to α is

f̂(α)
def= 〈f, χα〉 =

1
2n

∑
x∈{0,1}n

f(x)(−1)α·x.

The coefficient corresponding to α = 0 is called the principal Fourier coefficient, all the other
ones are called non-principal Fourier coefficients. Note that for a set S ⊆ {0, 1}n one has

1̂S(0) =
|S|
2n
,

namely the principal Fourier coefficient of 1S is equal to the relative size of the set. We will
also use the following three classical results, holding for any functions f, g, : {0, 1}n → R,
any α ∈ {0, 1}n, and any S ⊆ {0, 1}n:∑

x∈{0,1}n

f(x)g(x) = 2n
∑

α∈{0,1}n

f̂(α)ĝ(α) (21)

(̂f ∗ g)(α) = 2nf̂(α)ĝ(α) (22)∑
α∈{0,1}n

|1̂S(α)|2 =
|S|
2n
. (23)
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