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Abstract. The strikingly simple HB+ protocol of Juels and Weis [11]
has been proposed for the authentication of low-cost RFID tags. As well
as being computationally efficient, the protocol is accompanied by an
elegant proof of security. After its publication, Gilbert et al. [8] demon-
strated a simple man-in-the-middle attack that allowed an attacker to
recover the secret authentication keys. (The attack does not contradict
the proof of security since the attacker lies outside the adversarial model.)
Since then a range of schemes closely related to HB+ have been proposed
and these are intended to build on the security of HB+ while offering re-
sistance to the attack of [8]. In this paper we show that many of these
variants can still be attacked using the techniques of [8] and the original
HB+ protocol remains the most attractive member of the HB+ family.
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1 Introduction

The extension of cryptographic functions to low-cost RFID tags is an active
area of research. The combination of novel security requirements and demanding
physical environments provides a major incentive to the development of new
designs and techniques.

Juels and Weis introduced HB+ at Crypto 2005 [11]. The protocol is a multi-
round symmetric key authentication protocol where each round consists of three
communications between the reader and the tag. On the tag, HB+ is compu-
tationally lightweight since it requires only simple bit-wise operations. Further-
more, the protocol is supported by a proof of security against an active attacker
in what the HB+ designers call the detection-based model. In this model adver-
saries can interrogate a tag in any way they wish, and then they must try and
pass themselves off as an authentic tag to a legitimate reader. In loose terms,
Juels and Weis show that for such an attack to succeed the attacker would be
able to break an instance of the Learning Parity with Noise (LPN) problem
which is believed to be hard.

However, if we allow the attacker to do a little more—i.e. if we leave the
detection-based model—then HB+ becomes susceptible to a simple attack. In
particular, if an attacker can slightly modify messages from the reader and ob-
serve whether the legitimate reader still accepts the legitimate tag, then the
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attacker can recover secret key information. This is, in essence, the attack of
Gilbert et al. [8] which we will refer to as the GRS attack in what follows. Some
commentators suggest that interfering with the tag-reader communication would
be technically difficult. Others claim that forbidding such manipulation during
analysis ignores the full characteristics of a potential attack and makes poten-
tially dangerous assumptions on the limitations of an attacker. However this is
not the concern of this paper. Instead we will focus on the body of research that
has evolved from both HB+ and the GRS attack.

In his paper introducing the block cipher RC5, Rivest states that “ . . . a
simpler structure is perhaps more interesting to analyze and evaluate . . . ” [19].
This is now a well-established principle in cryptographic design and the simplic-
ity of both the original HB+ proposal and the GRS attack have given rise to a
number of HB-related protocols in the literature. The goal of these protocols is
that they retain some of the successful properties of HB+ while also resisting the
GRS attack. In this paper we will take a critical look at such variants. We can
show that despite claims to the contrary, the GRS attack can often be applied
or extended to these new variants. Thus the tolerance of the new schemes to the
GRS attack is often equivalent to that of HB+ and yet, at the same time, they
suffer from additional complexity and/or reduced practicality. In short, we show
that HB+ variants that resist the GRS attack are not that easy to come by.

Our paper is organised as followed. After introducing the HB+ protocol we
turn our attention to the variants HB++, HB∗, HB-MP′, and HB-MP. These
are treated in the order they appear in the literature and in Sections 3, 4 and
5 we provide a description and security analysis of each. We then discuss the
implications of our work in Section 6 and draw our conclusions. It should be
noted that our work is not concerned with the proofs of security for HB+ or its
variants. Instead our focus is on applications of the GRS attack.

Throughout we aim to use established notation. There will be some interplay
between vectors x ∈ {0, 1}k and scalars in F2 and we use bold type x to indicate
a vector while scalars x are written in normal text. The scalar product of two
vectors x and y will be written as x · y while their bitwise addition will be
denoted using ⊕ just as for single bits. We denote the Hamming weight of x by
Hwt(x). Several protocols require a rotation of x by i bit positions to the left;
we denote this operation by roti(x).

2 The HB+ Protocol and the GRS Attack

There are now several protocols based on HB+ and these offer a variable level
of security and practicality. We start by reviewing the original protocol, though
all depend for their security on the conjectured hardness of the Learning Parity
with Noise (LPN) problem [11].

LPN Problem. Let A be a random (q × k)-binary matrix, let x be a
random k-bit vector, let η ∈]0, 1

2 [ be a noise parameter, and let ν be
a random q-bit vector such that Hwt(ν) ≤ ηq. Given A, η, and z =
A · xt ⊕ νt, find a k-bit vector yt such that Hwt(A · yt ⊕ z) ≤ ηq.

Appears in G. Tsudik (Ed.): Financial Crypto 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Tag (secret x, y) Reader (secret x, y)
ν ∈R {0, 1|Prob(ν = 1) = η}

Choose b ∈R {0, 1}k b−−−−−−−−→
a←−−−−−−−− Choose a ∈R {0, 1}k

Let z = (a · x)⊕ (b · y)⊕ ν
z−−−−−−−−→ Check (a · x)⊕ (b · y) = z

Fig. 1. One single round of HB+ [11]. The entire authentication process requires r
rounds and, in this basic form, each round consists of the three passes shown. Provided
the tag fails less than some threshold t number of rounds, the tag is authenticated.

We will not consider the intractability of the LPN problem directly in this
paper, though we observe that the problem is not as difficult as was originally
thought [7,15]. This means that the parameters for HB+ and its variants often
need to be increased.

2.1 The HB+ protocol

The HB+ protocol is outlined in Figure 1. The tag and the reader share two k-bit
secrets x and y. One round of HB+ is as follows: the tag selects a random k-bit
blinding vector b and sends it to the reader. The reader challenges the tag with
a random k-bit vector a. The tag computes the response z = (a ·x)⊕ (b ·y)⊕ν,
where ν is a random noise bit taking the value 1 with probability η ∈]0, 1

2 [. This
is repeated for r rounds, and the tag is authenticated if the number of errors (i.e.
z distinct from (a·x)⊕(b·y)) is less than a threshold t = ur where u ∈]η, 1

2 [. The
difficulty of the LPN problem [7,11,13,15] is related to both k and the parameter
η which governs how much noise is added to the correct computations by a valid
tag. In its original state HB+ consists of multiple rounds each of three passes.
The parallel version of HB+—for which a proof of security also exists [13,14]—
compresses the multiple rounds into one single three-pass round.

Immediately one can see that HB+ requires very modest on-tag computation.
Leaving aside generating b and the bit ν, computation on the tag is reduced to
a dot-product, which can be computed bit-wise, and a single bit exclusive-or.
The novelty and simplicity of HB+ immediately generated considerable interest.
Katz and Shin [13] closed gaps and extended the original proof of security while
follow-on work by Katz and Smith [14] considered different noise levels.

2.2 An active attack on HB+

A simple active attack on HB+ is provided in [8]. The attack applies equally to
the serial and the parallel versions of HB+. For this attack it is assumed that an
adversary can manipulate challenges sent by a legitimate reader to a legitimate
tag during authentication. Further, we assume that the adversary learns whether
such manipulation leads to an authentication failure or not.
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Tag (secret x, y) Reader (secret x, y)
ν ∈ {0, 1|Prob(ν = 1) = η}

Choose b ∈R {0, 1}k b−−−−−−−−→
a′ = a⊕ δ←−−−−−−−−−− · · · a←−− Choose a ∈R {0, 1}k

Let z′ = (a′ · x)⊕ (b · y)⊕ ν
z′−−−−−−−−→ Check (a · x)⊕ (b · y) = z′

Fig. 2. The attack of [8] on HB+. The adversary modifies the communications between
reader and tag (by adding some perturbation δ and notes whether authentication is
still successful. This reveals one bit of secret information.

The attack consists of choosing a constant k-bit vector δ and using it to
perturb the challenges sent by a legitimate reader to the tag; δ is exclusive-or’ed
to each authentication challenge for each of the r rounds of authentication. If
the authentication process is successful then we must have that δ · x = 0 with
overwhelming probability. Otherwise δ · x = 1 with overwhelming probability.
Thus we gain one bit of secret information. The attack is illustrated in Figure 2
for one round of the HB+ protocol.

To retrieve the k-bit secret x one can repeat the attack k times for linearly
independent δ’s and solve the resulting system. Conveniently, an adversary can
choose δ’s with a single non-zero bit. With x an attacker can impersonate the
tag by setting b = 0. Alternatively, an attacker can emulate a false tag using
x, send a chosen blinding factor b to a legitimate reader, and return a · x to
the challenge a. If successful b · y = 0, otherwise b · y = 1, with overwhelming
probability. Thus y can be recovered with k linearly independent b.

The attack is mathematically simple though it is not covered by the existing
proof of security since the attacker needs to manipulate challenges and know
whether authentication is successful [11]. Yet, despite the technical difficulties
of interfering in a tag-reader exchange, the attack should be viewed as certifi-
cational. Certainly a variant of HB+ that is both computationally simple and
resistant to the GRS attack would be of some considerable interest.

All the variants to HB+we will consider in the following sections share some
properties with HB+. In particular, they all consist of the repetition of r ba-
sic rounds. An honest tag interacting with an honest reader may be rejected
with a probability we denote PFR (false rejection probability). An adversary
answering randomly at each round will be authenticated with a probability we
denote PFA (false acceptance probability). For HB+ these are given by PFR =∑r

i=t+1

(
r
i

)
ηi(1− η)r−i and PFA = 1

2r

∑t
i=0

(
r
i

)
.

3 The Variant HB++

Description of HB++. The protocol HB++ is proposed by Bringer et al. [3].
The complete proposal consists of two stages. In the first, illustrated in Figure 3,
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Tag (secret Z) Reader (secret Z)

Choose B ∈R {0, 1}k B−−−−−−−−−→
A←−−−−−−−−− Choose A ∈R {0, 1}k

(x, x′, y, y′) = h(Z, A, B) (x, x′, y, y′) = h(Z, A, B)

Tag (session x, x′, y, y′) Reader (session x, x′, y, y′)
ν ∈R {0, 1|Prob(ν = 1) = η}
ν′ ∈R {0, 1|Prob(ν′ = 1) = η}

Choose b ∈R {0, 1}k b−−−−−−−−→
a←−−−−−−−− Choose a ∈R {0, 1}k

z = (a · x)⊕ (b · y)⊕ ν
z′ = (roti(f(a)) · x′)

⊕(roti(f(b)) · y′)⊕ ν′

(z, z′)
−−−−−−−−→


Check (a · x)⊕ (b · y) = z
Check (roti(f(a)) · x′)

⊕(roti(f(b)) · y′) = z′

Fig. 3. The HB++ protocol. Above: At the start of each authentication, a preliminary
exchange of 2k bits and the use of a universal hash function h are required to derive the
session secrets x, x′, y, y′. Below: One single round i of HB++. The entire authentica-
tion process requires r rounds and, in this basic form, each round consists of the three
passes shown. Provided the tag fails both tests less than some threshold t number of
rounds, the tag is authenticated.

four k-bit secrets x,x′,y,y′ are derived by the tag and the reader from a shared
secret Z. These derived secrets might be viewed as session keys. Then HB++

consists of r rounds where each round consists of three passes, just as in HB+.
A single round of HB++ is illustrated in Figure 3. We can see that things are

slightly more complicated than in HB+. In particular, once the blinding vector
b and the challenge a have been sent, there are two on-tag computations.

The first looks like the HB+ on-tag computation and simply consists in com-
puting z = (a·x)⊕(b·y)⊕ν. The second involves a permutation f (which is in fact
a layer of five-bit S-boxes) and also requires that k-bit quantities be rotated by i
bit positions where i denotes the round (rounds are numbered from 0 to r − 1).
The second response bit is given by z′ = (roti(f(a)) ·x′)⊕(roti(f(b)) ·y′)⊕ν′.
Both noise bits ν and ν′ are randomly chosen according to the noise parameter
η. For the tag to be authenticated, the number of erroneous z answers and the
number of erroneous z′ answers must be less than some threshold t = ur, where
u ∈]η, 1

2 [. Consequently the false rejection and false acceptance probabilities are:

PFR = 1−

(
t∑

i=0

(
r

i

)
ηi(1− η)r−i

)2

and PFA =

(
1
2r

t∑
i=0

(
r

i

))2

.
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The proposed number of rounds is not given, but the parameters in [3], in par-
ticular k = 80, give a much-reduced level of security when compared to HB+.

Variant of Piramuthu. Piramuthu [18] proposes a modification to HB++

but the details are unclear. The main difference with HB++ appears to be the
removal of the first on-tag computation. However this means that what remains
is equivalent to HB+ itself. Thus it will have all the characteristics of HB+ while
at the same time possessing a heavier on-tag computation. We do not consider
this variant further.

Attacking HB++ without the renewed secrets. We first show how to
attack HB++ when the preliminary phase to renew the secrets (x,x′,y,y′) is
omitted. We note that Wagner described an attack on a preliminary version
of HB++ where the rotations are omitted, which was described in the original
paper [3]. In this attack, the attacker guesses a short portion of the secrets x
and x′ and then modifies the challenges sent by the reader but also the answer
returned by the tag accordingly to his guess. If the tag is authenticated, the
attacker knows that with high probability his guess was right. Bringer et al.
introduced the rotations to counter this attack. The rationale is that this way,
even if the perturbation of a is localized, the perturbation of f(a) will affect all
bits of the secret x′. It seems however that the following fact was overlooked: it
is not necessary for the attacker to perturb all the rounds of the protocol but
only a fixed fraction to be able to gain information through the decision of the
reader. As we will show now, this leads to an efficient variant of the GRS attack.

Unlike the attack of Wagner, the attack we describe doesn’t require that we
modify the answers of the tag. As in the GRS attack, the attacker adds a fixed
vector δ to the challenges ai sent by the reader, but only for a fixed number of
rounds s < r (say the first s rounds). Let σi and σ′

i denote the total error vectors
on the answers zi and z′i of the tag at round i. For rounds i = 0 to s − 1, one
has σi = νi ⊕ δ · x and σ′

i = ν′
i ⊕ δ′

i · x′ where δ′
i = roti(f(ai ⊕ δ) ⊕ f(ai)),

whereas for rounds i = s to r − 1, one simply has σi = νi and σ′
i = ν′

i. Let N
(resp. N ′) denote the number of answers zi (resp. z′i) in error. The function f
was chosen to satisfy good differential properties, meaning that for a fixed δ and
a fixed c, Pra[f(a⊕ δ)⊕ f(a) = c] is very small for most values of δ. Hence the
noise bits σ′

i for rounds 0 to s− 1 are close to uniformly distributed and we may
assume1 that, whatever δ, N ′ is distributed as the sum of s Poisson trials taking
the value 0 or 1 with probability 1

2 and r − s Poisson trials taking the value 0
with probability 1 − η and 1 with probability η. The expected value of N ′ is
µ′ = s

2 + η(r − s) = 1
2 (1− 2η)s + ηr. Unlike N ′, the distribution of N depends

on the value of δ · x. When δ · x = 0, the answers zi are undisturbed and N is
distributed as the sum of r Poisson trials taking the value 0 with probability 1−η

1 Note that this is strictly speaking an approximation and that in fact the distribution
of (σ′0, . . . , σ

′
s−1) will be nearly uniform for an overwhelming fraction of x′ and δ.

Concrete values will depend on the parameter ∆f defined in [3].
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and 1 with probability η. The expected value of N in this case is µ0 = ηr < t.
When δ ·x = 1, the s first answers zi are correct with probability η and incorrect
with probability 1−η, while the r−s remaining rounds are undisturbed. In that
case, N ′ is distributed as the sum of s Poisson trials taking the value 0 with
probability η and 1 with probability 1 − η and r − s Poisson trials taking the
value 0 with probability 1 − η and 1 with probability η. The expected value of
N is µ1 = (1− η)s+ η(r− s) = (1− 2η)s+ ηr. Consequently, if we choose s such
that µ′ < t, and µ1 > t, the number of errors on z′ will be less than t with high
probability, and the reader’s decision will indicate whether the number of errors
on z was less or more than t, which in turn will indicate whether δ · x = 0 or 1.

Going into details, we will compute the advantage of the attacker guessing
δ ·x = 0 when the reader accepts and δ ·x = 1 when the reader rejects. Denoting
WG the event that the guess is wrong, we will upper bound the probability of
WG as follows:

Pr[WG] =
1
2

(Pr[WG | δ · x = 0] + Pr[WG | δ · x = 1])

=
1
2

(Pr[R rejects | δ · x = 0] + Pr[R accepts | δ · x = 1])

=
1
2
(
Pr[(N > t) ∨ (N ′ > t) | δ · x = 0]

+ Pr[(N ≤ t) ∧ (N ′ ≤ t) | δ · x = 1]
)

≤ 1
2

(Pr[N ′ > t] + Pr[N > t | δ · x = 0] + Pr[(N ≤ t) | δ · x = 1])

≤ 1
2

(
e
− (t−µ′)2

3µ′ + e−
(t−µ0)2

3µ0 + e−
(µ1−t)2

2µ1

)
where the last inequalities come from the Chernoff bounds (see Appendix). Ac-
cording to the expressions of µ′ and µ1, the condition on s to have µ′ < t and
µ1 > t is

t− ηr

1− 2η
< s < 2

t− ηr

1− 2η
.

Whether such s exist will depend on the parameters of the scheme, however
we note that in order for the protocol to have a low false rejection probability,
t has to be sufficiently distinct from ηr. In particular, taking t = dηre yields
PFR ' 0.4 (see Section 6), which is unacceptable. Hence, it is arguable that such
s will exist. However, concrete values in the formulae show that it is uncertain
for the attacker to make a guess when the reader rejects, as the probability for
this to happen when δ · x = 0 (due to N ′ > t) may be quite high when µ′

is close to t. A much better strategy is to make a guess only when the reader
accepts, guessing that δ ·x = 0. In this case, the probability of a wrong guess is
given by Pr[WGa] = Pr[δ · x = 1 |R accepts] = 1

2P−1
a Pr[R accepts | δ · x = 1],

where Pa is the probability that the reader accepts for a random δ. Pr[WGa]
decreases with s as the gap between t and µ1 increases. The cost is that a higher
number of attempts will be required to retrieve x, namely O(k · P−1

a ), which
may become impractical as s tends to r since Pa becomes negligible. However,
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for s =
⌊
2 t−ηr

1−2η

⌋
, µ′ ' t so that N ′ is more or less than t with probability roughly

1/2, and hence the reader accepts with probability roughly 1/4. We computed
concrete values for different set of parameters. For example, when (r, t, η) =
(80, 30, 0.25) we obtain, with s = 40, Pr[WGa] ' 0.007 and P−1

a ' 3.62, whereas
for (r, t, η) = (160, 60, 0.25), we obtain, with s = 80, Pr[WGa] ' 0.0002 and
P−1

a ' 3.73.
Once x has been retrieved with high confidence, x′ can be obtained by adding

to the i-th challenge a vector δi such that δi ·x = 0 and roti((f(ai⊕δi)⊕f(ai))
is constant, which will give linear equations on x′.

Attacking HB++ with renewed secrets. Let us now consider the situation
where HB++ is operated with renewed secrets at each authentication, as rec-
ommended by the authors of [3]. We show that while secret renewal apparently
protects HB++ against a simple application of the GRS attack, a slightly more
complex attack remains.

To explain this attack, we need to introduce the function h that is used to
derive the 320-bit temporary authentication key (x,x′,y,y′) from a permanent
768-bit secret Z. This function is derived from the hash functions family WH, a
variant of the hash functions family NH on which the UMAC message authen-
tication code is based [2] and which was proposed by Kaps et al. in [12].

The instance of WH used to construct h is defined as follows: given two
160-bit words K = (K1, . . . ,Kn) ∈ (F216)n, and M = (M1, . . . ,Mn) ∈ (F216)n,
where n = 10, the 16-bit word WHK(M) is defined as

WHK(M) =
n/2∑
i=1

(M2i−1 + K2i−1) · (M2i + K2i) · ci,

where the ci are F216 constants defined in [12]. The function h results from t = 20
invocations of this instance of WH, according to the construction of a hash func-
tion family with a larger key and output size named WHT proposed in [12]. Given
Z = (Z1, . . . , Zn+2(t−1)) ∈ (F216)n+2(t−1) = (F216)48, and M = (M1, . . . ,Mn) ∈
Fn

216 = (F216)10, the t-uple WHT
Z(M) of F216 words is defined as WHT

Z(M) =
(WHZ1...Zn

(M),WHZ3···Zn+2(M), · · · ,WHZ2t−1···Zn+2t−2(M)). With the pre-
vious notation h is defined as h(Z,A,B) = WHT

Z(M) where M = (A||B).
One can see from the former equations that given any fixed pair (A,B),

h(Z,A,B) is a known quadratic function of (Z1, . . . , Z48). However, the se-
curity advantage that results from having a quadratic expression rather than a
linear one is quite marginal for this particular function. This is due to the follow-
ing property that immediately results from the definition of WH: for all (A,B)
pairs, each of the t 16-bit words of h(Z,A,B) can be expressed as a known
affine function with F216 coefficients of only 15 unknown words, namely 10 con-
secutive values of the sequence (Z1, · · ·Z48) and 5 of the 24 products Z1 · Z2,
Z3 · Z4, . . . , Z47 · Z48. Equivalently, if we consider equations over F2 instead of
F216 , each bit of h(Z,A,B) can be expressed for all (A,B) pairs as a known
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affine function of only 240 unknown bits, namely 160 Z bits and 80 quadratic
functions of Z bits. We call hereafter such unknown bits expanded key bits.2

We now present the cryptanalysis of HB++. We have shown in the former
section that, by disturbing a subset of s rounds of an authentication and exploit-
ing the authentication success or failure information for the disturbed protocol,
an adversary is capable of getting approximate linear equations involving a sub-
set of the bits of x, say the 16 first bits of x (which all linearly depends on
the same 240 expanded key bits). If we collect a sufficient number m of such
equations, relating to m temporary values x, we get an LPN problem in 240
expanded key bits. According to the previous analysis, the error parameter for
this LPN problem will typically not be more than 0.01. Levieil and Fouque [15]
estimate that such instances of the LPN problem can be solved with about 230

noisy samples and 241 steps of computation and bytes of memory. Thus 240 bits
of the expanded key can be recovered by solving an LPN problem of medium
complexity. The same method can be applied to recover 240-bit portions of the
expanded key allowing the attacker to predict the other 16-bit words of x. Once
this is done, x can be predicted by the adversary for each authentication. This
renders the derivation of m approximate linear equations on x′ bits even easier
than the initial derivation of approximate equations on x bits and therefore the
parts of the expanded key that allow the attacker to compute the value of x′ at
each authentication can now be derived.

At this stage, the adversary has enough information to impersonate the tag
without having to derive the rest of the expanded key and derive y and y′.
The adversary can re-use the masking vectors b used by the tag in a successful
authentication along with its knowledge of x and x′ to correct the z and z′

values in an appropriate way. All in all, HB++ can be cryptanalyzed by solving
10 LPN problems of size 240 bits with small noise parameters. The total number
of authentications needed is multiplied by P−1

a ' 4 as only authentications
where the reader accepts are used. For example, for (r, t, η) = (80, 30, 0.25), the
noise parameter of the LPN problem is roughly 0.01 so that the total number of
authentications needed is 4 × 10 × 230 ' 235 and the total complexity is about
244. Moreover, it is possible to reduce the number of authentications needed at
the expense of an increased complexity. Hence HB++ offers a much reduced level
of security considering the complexity of the operations it requires.

4 The Variant HB∗

Description of HB∗. The variant HB∗ is proposed by Duc and Kim [5]. Again
it consists of r rounds where each round consists of three passes. This is illus-
trated in Figure 4. There is an additional secret s which is used to secretly
transmit from the tag to the reader a random bit γ, which is 1 with probabil-
ity η′ ∈]0, 1

2 ], and which determines whether the right answer is computed as
(a · x) ⊕ (b · y) or (a · y) ⊕ (b · x). As in HB+, the tag is authenticated if the
2 Thus the function h involves 1152 expanded key bits in overall, namely 768 Z bits

and 384 quadratic functions of the Z bits.
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Tag (secret x, y, s) Reader (secret x, y, s)
γ ∈R {0, 1|Prob(ν = 1) = η′}
ν ∈R {0, 1|Prob(ν = 1) = η}

Choose b ∈R {0, 1}k

w = (b · s)⊕ γ
b, w−−−−−−−−−−→

a←−−−−−−−− Choose a ∈R {0, 1}k
If γ = 0

z = (a · x)⊕ (b · y)⊕ ν
else

z = (a · y)⊕ (b · x)⊕ ν
z−−−−−−−−→ If (b · s) = w

check (a · x)⊕ (b · y) = z
else

check (a · y)⊕ (b · x) = z

Fig. 4. One single round of HB∗. The entire authentication process requires r rounds
and, in this basic form, each round consists of the three passes shown. Provided the
tag fails less than some threshold t number of rounds, the tag is authenticated.

number of errors is less than some threshold t = ur, where u ∈]η, 1
2 [. Note that

the false rejection and false acceptance probabilities PFR and PFA are given by
the same formulas as in the case of HB+. In particular these probabilities are
independent of η′. The on-tag computation is roughly twice that of HB+ (but
less than that required in HB++) while resistance to the GRS attack is claimed.
In the next section we apply the GRS attack to HB∗ and show that HB∗ offers
no advantage over HB+.

Attacking HB∗. We show that HB∗ remains vulnerable to an extremely close
variant of the GRS attack. The first phase of the attack aims to gather infor-
mation on δ · x and δ · y for independent vectors δ. For this, the adversary
proceeds exactly as in the GRS attack and modifies the challenges sent by the
reader by adding a vector δ to a. When δ · x = 0 and δ · y = 0, the protocol is
undisturbed and the tag will be authenticated with high probability. In all other
cases, the authentication will be less likely to succeed, so that the output of the
reader gives information about x and y. More precisely, depending on the values
of δ · x and δ · y, each round of the protocol will be successful or not with the
following probabilities:

1. if δ · x = 0 and δ · y = 0, then none of the r rounds of the protocol are
disturbed. The response of the tag is incorrect each time ν = 1, hence with
probability τ1 = η and the reader accepts with probability 1 − PFR and
rejects with probability PFR.

2. if δ · x = 0 and δ · y = 1, the response of the tag is incorrect each time
(γ = 0, ν = 1) or (γ = 1, ν = 0), hence with probability

τ2 = (1− η)η′ + (1− η′)η = η + (1− 2η)η′ > η.
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3. if δ · x = 1 and δ · y = 0, the response of the tag is incorrect each time
(γ = 0, ν = 0) or (γ = 1, ν = 1), hence with probability

τ3 = (1− η)(1− η′) + ηη′ = η + (1− 2η)(1− η′) > η.

4. if δ ·x = 1 and δ ·y = 1, the response of the tag is incorrect each time ν = 0,
whatever γ, hence with probability τ4 = 1− η = η + (1− 2η) > η.

Note that τ1 < τ2 ≤ 1
2 ≤ τ3 < τ4. Note also that when η′ → 0 (η′ = 0

corresponds to the classical HB+ protocol), τ2 → τ1 and τ3 → τ4, whereas when
η′ → 1

2 , τ2 → 1
2 and τ3 → 1

2 . In each of the cases 2, 3 and 4, the reader will
reject with probability greater than PFR, namely P rej

i = Pr [R rejects | case i] =∑r
j=t+1

(
r
j

)
τ j
i (1− τ r−j

i ).
According to the Chernoff bound (see Appendix), the adversary will be able

to discriminate between case i and j as soon as |P rej
i − P rej

j | is non-negligible.
We have to distinguish two cases: either τ2 ≤ u, or τ2 > u.

When τ2 ≤ u, i.e. η′ ≤ u−η
1−2η , we are “almost” in the HB+ case: the reader will

accept with overwhelming probability when δ ·x = 0 and reject with overwhelm-
ing probability when δ ·x = 1, independently of δ ·y. The GRS attack applies as
it is, meaning that the adversary can retrieve x with high probability in linear
time. Once this is done, it can impersonate a tag by sending (b, ω) = (0, 0) as
first message.

When τ2 > u, i.e. η′ > u−η
1−2η , the attacker can only discriminate case 1 from

cases 2, 3, and 4. Indeed the reader will accept with overwhelming probability
when δ · x = 0 and δ · y = 0, and reject with overwhelming probability in the
three other cases. However this does not prevent a slight variant of the GRS
attack as follows.

We assume that x and y are linearly independent. For a random δ, case 1
happens with probability 1

4 , so that the adversary will be able to find with Θ(4k)
attempts k − 2 independent vectors δ such that δ · x = 0 and δ · y = 0. Put a
different way, he is able to learn the two-dimensional vectorial space 〈x,y〉. Let
c1, c2 and c3 denote the three non-null vectors in this vectorial space. Once they
are found, the adversary can directly impersonate a valid tag with probability
roughly 1

8 by choosing at random two vectors among (c1, c2, c3) (say c1 and c2),
fixing two arbitrary values for (b, ω) that he will send at each round, and then
answering (c1 · a) ⊕ (c2 · b) at each round. The adversary will be successfully
authenticated when (b · s = ω, c1 = x, c2 = y) or (b · s 6= ω, c1 = y, c2 = x),
which happens with probability 1

8 .
Alternatively, the adversary can do a little more work and identify from the

three values (c1, c2, c3) the one which is equal to x ⊕ y. For this, the attacker
queries the honest tag with challenges a systematically equal to the blinding
vector b sent by the tag. That way, the answer of the tag is always equal to
b · (x ⊕ y) ⊕ ν and the attacker deduces that x ⊕ y is the value ci such that
the number of b’s such that b · ci is equal to the answer of the tag is maximal.
Once this is done, the adversary knows the unordered set {x,y}. This is enough
to impersonate the tag with probability 1

2 . Assume that the vector c3 has been
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Tag (secret x) Reader (secret x)
ν ∈R {0, 1|Prob(ν = 1) = η}

a←−−−−−−−− Choose a ∈R {0, 1}k
Compute z = (a · x)⊕ ν

Choose b with (b · x) = z
b−−−−−−−−→ Check (b · x) = (a · x)

Tag (secret x, y) Reader (secret x, y)
ν ∈R {0, 1|Prob(ν = 1) = η}

a←−−−−−−−− Choose a ∈R {0, 1}m
x = rotate(x, yi)

Compute z = (a · (bxcm))⊕ ν

Choose b with (b · (bxcm)) = z
b−−−−−−−−→ x = rotate(x, yi)

Check (b · (bxcm)) = (a · (bxcm))

Fig. 5. Round i of HB-MP′ (above) and HB-MP (below). The entire authentication
process requires r rounds and, in this basic form, each round consists of the two passes
shown. Provided the tag fails less than some threshold t number of rounds, the tag is
authenticated. For HB-MP bxcm denotes the m least significant bits of x and yi is the
ith bit of y which is used as the argument to a bitwise rotation.

ruled out as being x⊕y. The adversary randomly fixes values for (b, ω) that he
will send at each round, and then answers (c1 · a)⊕ (c2 · b) at each round. The
adversary will be successfully authenticated when (b · s = ω, c1 = x, c2 = y) or
(b · s 6= ω, c1 = y, c2 = x), which happens now with probability 1

2 . Note that
whatever the outcome of this first attempt, the adversary will successfully pass
the following attempt with probability 1. If the first attempt succeeded he can
reuse the same (b, ω) and answer (c1 · a) ⊕ (c2 · b) at each round. If the first
attempt failed, use the same (b, ω) but answer (c2 · a)⊕ (c1 · b) at each round;
the answer will always be correct and the tag will be successfully impersonated.

5 The Variants HB-MP′ and HB-MP

Description of HB-MP′ and HB-MP. Another prominent protocol due to
Munilla and Peinado is HB-MP [17]. In a departure from the HB+ approach, each
of the r rounds consists of only a two-pass communication between the tag and
the reader. This is illustrated in Figure 5 where two variants are depicted; the
first variant HB-MP′ is claimed to be resistant to chosen challenges (presumably
against the tag) while the second HB-MP is claimed to resist the GRS attack.

While HB-MP′ and HB-MP are reasonably lightweight, we show in the next
section that both are less secure than HB+ since they are vulnerable to a passive
attack. These are the attacks that HB+ provably resists and so HB-MP′ and HB-
MP are not good alternatives.
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Table 1. Error rates and transmission costs for HB+ and different parameter choices.

False reject False accept Transmission cost (bits)
r η k rate rate [k = 224] [k = 512]

100 0.25 224 0.45 3× 10−7 44, 900 102, 500
80 0.25 224 0.44 4× 10−6 35, 920 82, 000
60 0.25 224 0.43 6× 10−5 26, 984 61, 500
40 0.25 224 0.42 1× 10−3 17, 960 41, 000

Attacking HB-MP′ and HB-MP. In their paper, Munilla and Peinado claim
that HB-MP is immune to passive attacks, but also active and man-in-the-middle
attacks of the GRS type. However, there is a very simple passive attack which
enables an adversary which simply eavesdrops the r rounds of one execution of
the protocol to impersonate a valid tag with probability 1− PFR.

Note that the verification done by the reader consists in checking that (a⊕
b) · (bxcm) = 0. This equation is always verified when b = a, so that Munilla
and Peinado recommend that the reader rejects a tag as soon as it answers a in
any round. However, for an adversary which has eavesdropped the r rounds of
a previous execution of the protocol, it is easy to compute a vector b different
from a and such that (a⊕ b) · (bxcm) = 0 with high probability as follows.

The adversary simply records the r pairs (ai, bi) which are exchanged be-
tween the honest tag and the honest reader. Then we know that with prob-
ability (1 − η), (ai ⊕ bi) · (bxcm) = 0. Hence, for any other challenge a′

i,
the answer b′

i = a′
i ⊕ ai ⊕ bi is different from a′

i (because bi 6= ai) and
(a′

i ⊕ b′
i) · (bxcm) = (ai ⊕ bi) · (bxcm). Hence the adversary is authenticated as

soon as the tag was authenticated in the eavesdropped execution of the protocol.
The attack works exactly in the same way against HB-MP′.

6 Discussion and Implications

The computational challenges posed by low-cost RFID tags have generated many
cryptographic proposals which rely exclusively on the simplest (typically bitwise)
operations. While some might express the view that some security is better than
no security, even claims for “some security” need to be verified. Weaknesses
in some of the simpler RFID protocols has already been demonstrated before,
e.g. [4], and will undoubtedly be demonstrated in the future.

Those working in the field of RFID security are correct when claiming that
one doesn’t necessarily need full security for a deployment. This is why a proposal
like HB+ is actually rather successful: it doesn’t claim to protect against all
adversaries, but for adversaries with a minimum technical capability it provides
a reasonable level of security. HB+ does as claims and no more. The variants
described in this note have attempted to do more and have, arguably, delivered
less. It is difficult to do a lot with such basic operations.
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This is not to say, however, that HB+ is currently ideal. While the on-tag
computation is low, the GRS attack may be practically important to some (i.e. it
might be more than certificational). Furthermore, the communication overheads
for HB+ are substantial while the false acceptance and false rejection rates are
not suitable for deployment. These are shown in Table 1 for the parameter
k = 224 and acceptance threshold rη proposed in HB+ [11]. Based on the work
of [15] we also consider the data transmission costs when k = 512 which is a
more appropriate value to use if we are seeking 80-bit security.

These are unfortunate barriers for any practical deployment of HB+. Never-
theless, the computational complexity and simplicity of HB+ are very attractive
and it nicely complements other work that seeks to extend more conventional
forms of cryptography [1,6,10,16]. It is therefore an interesting challenge to find
the right variant of HB+ that simultaneously improves both security and effi-
ciency: one such proposal has been named HB# by the authors [9].

7 Conclusions

In this paper we have considered variants to HB+. While they were designed
with the sole intention of resisting the GRS attack on HB+, all of HB++, HB∗,
HB-MP′, and HB-MP are vulnerable to GRS-style attacks. In addition these
variants sacrifice much of the simplicity and elegance of the original HB+. Despite
some questions on the practical implementation of HB+ and the existence of the
GRS attack, the computational efficiency and theoretical foundations of HB+ are
impressive. And while the work in this paper suggests that good variants to HB+

are very hard to find, the right variant might offer a particularly interesting—and
successful—solution to the problem of low-cost tag authentication.

Acknowledgements. We would like to thank Stanislaw Jarecki for his thought-
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A Chernoff Bounds

We recall here the classical Chernoff bounds. Let X1, . . . , Xn be independent
Poisson trials such that Pr[Xi = 1] = pi. Let X =

∑n
i=1 Xi and µ be the

expected value of X. Then for any t < µ and t′ > µ,

Pr[X ≤ t] ≤ e−
(µ−t)2

2µ and Pr[X ≥ t′] ≤ e−
(t′−µ)2

3µ .
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