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Abstract. We analyze the security of the iterated Even-Mansour cipher (a.k.a. key-alternating
cipher), a very simple and natural construction of a blockcipher in the random permutation
model. This construction, first considered by Even and Mansour (J. Cryptology, 1997) with a
single permutation, was recently generalized to use t permutations in the work of Bogdanov et
al. (EUROCRYPT 2012). They proved that the construction is secure up to O(N2/3) queries
(where N is the domain size of the permutations), as soon as the number t of rounds is 2 or more.
This is tight for t = 2, however in the general case the best known attack requires Ω(N t/(t+1))
queries. In this paper, we give asymptotically tight security proofs for two types of adversaries:
1. for non-adaptive chosen-plaintext adversaries, we prove that the construction achieves an

optimal security bound of O(N t/(t+1)) queries;
2. for adaptive chosen-plaintext and ciphertext adversaries, we prove that the construction

achieves security up to O(N t/(t+2)) queries (for t even). This improves previous results for
t ≥ 6.

Our proof crucially relies on the use of a coupling to upper-bound the statistical distance of the
outputs of the iterated Even-Mansour cipher to the uniform distribution.

Keywords: blockcipher, Even-Mansour cipher, key-alternating cipher, random permutation
model, coupling, provable security

1 Introduction

The Even-Mansour Cipher. Even and Mansour [EM97] proposed the following “min-
imal” construction of a blockcipher on message space {0, 1}n: given a public permutation
P on {0, 1}n (e.g. AES-128 with a fixed, publicly known key), encrypt x by computing
y = k1 ⊕ P (k0 ⊕ x), where k0, k1 are two n-bit keys. Their work was motivated by the DESX
construction proposed by Rivest (1984, unpublished) and later formally analyzed by Kilian
and Rogaway [KR01], in which Rivest suggested to strengthen DES against exhaustive key
search by using two independent pre-whitening and post-whitening keys xored respectively to
the input and the output of DES (thereby augmenting the key size of the resulting cipher from
56 to 184 bits). Even and Mansour analyzed their proposal in the random permutation model,
where P is replaced by an oracle implementing a random (invertible) permutation, publicly
accessible to all parties including the adversary. They showed that an adversary with black-
box access to both P and the cipher with a random unknown key (as well as their inverse), has
only a negligible probability to correctly inverse the cipher on an un-queried ciphertext of its
choice (or to compute the ciphertext corresponding to some un-queried plaintext). In fact, the
Even-Mansour cipher yields a (strong) pseudorandom permutation (in the random permuta-
tion model) in the sense that the system (P, EMP,(k0,k1)), where EMP,(k0,k1) is the Even-Mansour
cipher built from P with two uniformly random keys k0 and k1, is indistinguishable from an



ideal system (P,Q), where Q is an independent random permutation. More precisely, any dis-
tinguisher has to make Ω(2n/2) queries to distinguish these two systems with non-negligible
advantage.3

The Iterated Even-Mansour Cipher. The Even-Mansour cipher was recently generalized
in a very natural way by Bogdanov et al. [BKL+12] as follows: given t public permutations
P1, . . . , Pt on {0, 1}n, encrypt x by computing:

y = kt ⊕ Pt(kt−1 ⊕ Pt−1(· · ·P1(k0 ⊕ x) · · · )) ,

where k0, . . . , kt are t + 1 keys of n bits. They used the moniker (first coined in [DR05]) key
alternating cipher for this construction, but we will prefer the name iterated Even-Mansour
cipher in this paper to emphasize that we work in the random permutation model. We will
refer to t as the number of rounds of the construction.

The main result of [BKL+12] is a proof (again, in the random permutation model for
P1, . . . Pt) that the iterated Even-Mansour cipher with t ≥ 2 rounds is secure (i.e., indistin-
guishable from an independent random permutation) up to O(N2/3) queries (where N = 2n).
They also gave a distinguishing attack (in fact a key-recovery attack) requiring Ω(N t/(t+1))
queries. Hence, their analysis is tight for t = 2, but they left the security gap for t > 2 as an
interesting open problem.

Our Contribution. In this work, we strengthen the security bounds of [BKL+12]. We obtain
two distinct results depending on which type of adversaries we consider. For non-adaptive
chosen-plaintext (NCPA for short) adversaries, we prove that the iterated Even-Mansour
cipher with t rounds is secure up to O(N t/(t+1)) queries. Given that the attack described
by [BKL+12] falls into this category of adversaries, this is tight up to constant factors. Tough
this type of adversaries was not explicitly considered by [BKL+12], we note that this improves
their general bound as soon as t ≥ 3.

For adaptive chosen-plaintext and ciphertext (CCA for short) adversaries (i.e. the most
powerful ones in terms of how queries may be issued to the system), we prove that the iterated
Even-Mansour cipher with t rounds is secure up to O(N t/(t+2)) queries when t is even. When
t is odd, we get the same bound as for t − 1 (since it is clear that adding a round to the
construction cannot improve the advantage of a distinguisher). Our bound becomes better
than O(N2/3), therefore improving [BKL+12]’s result, for t ≥ 6. In particular, for t = 6,
we obtain an improved security bound of O(N3/4) queries. Our findings are summarized in
Table 1.

Our Techniques. Our proof strategy is very different and much simpler than the one
of [BKL+12] (the counterpart of which is that for the interesting case of CCA adversaries,
we improve their results only for t “large”, where large means at least 6). One of the main
ingredient of our proof is a well-known tool of the theory of Markov chains, namely the cou-
pling technique. Indeed, a crucial step of our proof is to upper-bound, for any possible tuple of
plaintext queries (x1, . . . , xqe) to the iterated Even-Mansour cipher, the statistical distance of

3 To the best of our knowledge, no elementary proof of this fact appeared before (attacks considered in [EM97]
were not distinguishing attacks). We give a simple counting argument in Appendix B.
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the outputs of the cipher to the uniform distribution, conditioned on some partial information
about the inner permutations P1, . . . , Pt (namely equations of the form Pi(a) = b) that was
gathered from the queries to these permutations. The outputs of permutations Pi, i = 1, . . . , t,
when computing the ciphertexts for inputs (x1, . . . , xqe), can be seen as the state of a Markov
chain, so that we can reformulate the problem as studying how quick the distribution of this
Markov chain converges to the uniform (as a function of the number of rounds). The coupling
technique is one of the most efficient way to analyze this convergence rate (often named the
mixing time of the Markov chain), and this is exactly the technique we adopt. Couplings were
previously used in cryptography by Mironov [Mir02] to analyze the RC4 stream cipher, and
more recently by Morris et al. [MRS09] to study maximally unbalanced Feistel networks and
by Hoang and Rogaway [HR10] who generalized the results of [MRS09] to many variants of the
Feistel construction. In fact, our analysis was strongly inspired by the works of [MRS09,HR10].

However, the coupling technique only enables to treat adversaries choosing their queries
to the cipher non-adaptively. To leverage the result from NCPA-security to CCA-security, we
use a composition strategy which is very similar to what is often referred to as the “two weak
make one strong” technique [MP04,MPR07]. For “classical” pseudorandom permutations (i.e.
not build from ideal primitives as the Even-Mansour cipher), this strategy enables to prove
the following: if {Fk} and {Gk′} are two permutation families secure against NCPA attacks
(with upper-bounds resp. εF and εG on the advantage of any NCPA-distinguisher), then the
composition {G−1

k′ ◦ Fk} is secure against CCA attacks (with advantage upper-bounded by
εF + εG). This was proved by Maurer and Pietrzak [MP04] up to logarithmic factors and
then refined by Maurer et al. [MPR07], in the formalism of random systems. However, subtle
complications appear when trying to use these results directly because of the additional inner
permutation oracles P1, . . . , Pt, so that we prefer a more direct approach, very similar to the
“H coefficients” technique of Patarin [Pat91].

A caveat. We warn that the value of our results is similar to security proofs in the random
oracle model [BR93], meaning that they offer no guarantee once the inner permutations are
instantiated with real, standard permutations [CGH98]. They show however that any attack
beating our bounds cannot use the inner permutations as black-boxes.

Related Work. We focus on security proofs in this work, but we stress that quite a few
papers explored attacks (mainly key-recovery ones) against the Even-Mansour cipher. Dae-
men [Dae91] gave a differential-style attack requiring qp (direct) chosen queries to P and qe
chosen plaintext queries to the cipher, with qpqe = Ω(2n) (hence the total query complexity
is minimized for qp = qe = Ω(2n/2)). Later, Biryukov and Wagner [BW00] gave an attack re-
quiring Ω(2n/2) queries to both P and the cipher, but allowing to use known plaintexts rather
than chosen ones. However, their method does not allow any trade-off between queries to P
and the cipher as is possible in Daemen’s attack. Recently, Dunkelman et al. [DKS12] refined
the work of [BW00] by giving a known-plaintext attack where such a trade-off is possible,
thereby providing an optimal attack on the Even-Mansour cipher.

On the provable-security side, Gentry and Ramzan [GR04] showed that the Even-Mansour
cipher remains secure when the random permutation oracle P is replaced by a Feistel con-
struction with four rounds, where the round functions are public random function oracles.
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t NCPA CCA CCA (n = 128)

2 2/3 1/2 —
3 3/4 1/2 —
4 4/5 2/3 —
5 5/6 2/3 —
6 6/7 3/4 93
7 7/8 3/4 93
8 8/9 4/5 100

Table 1. Summary of our results. The NCPA (resp. CCA) column gives the constant c such that the iterated
Even-Mansour cipher is secure up to Nc queries against NCPA-distinguishers (resp. CCA-distinguishers).
Gray cells indicate when we improve the N2/3 bound of [BKL+12]. The last column gives, for n = 128, the
log in base 2 of the minimal number of queries a CCA-distinguisher has to make to have advantage at least
1/2 in distinguishing the cipher from random (we only give this number when our bound improves the one
of [BKL+12]).

Open Problems. Our work settles the case of non-adaptive chosen-plaintext adversaries;
there remains however a gap for adaptive chosen-plaintext and ciphertext attacks between
the proven bound of O(N t/(t+2)) queries and the best attack requiring Ω(N t/(t+1)) queries.
The two practically appealing cases where all keys are identical (as was for example recently
proposed in the blockcipher LED [GPPR11]), and where all inner permutations are identical,
also remain interesting directions of research. It may even be possible that using both identical
keys and a single inner permutation provides some level of security greater than 2n/2.4

Organization. In Section 2, we introduce the general notation, formally define the adversarial
model, and give the necessary background on couplings. In Section 3, we prove our main result
on the statistical distance of the outputs of the iterated Even-Mansour cipher to the uniform
distribution using a coupling, which enables us to treat NCPA-adversaries. In Section 4, we
deal with CCA-adversaries.

2 Preliminaries

2.1 General Notation

In all the following, we fix an integer n ≥ 1. We denote In = {0, 1}n the set of binary
strings of length n and N = 2n. Given an integer q ≥ 1, we denote (In)∗q the set of all
sequences of pairwise distinct elements of In of length q. Given integers q1, . . . , qt we denote
(In)∗q1,...,qt = (In)∗q1 × · · · × (In)∗qt . We denote (N)q = N(N − 1) · · · (N − q + 1) the falling
factorial. Note that |(In)∗q| = (N)q. We denote [i; j] the set of integers k such that i ≤ k ≤ j.

The set of permutations on In will be denoted Pn. Given P ∈ Pn and two sequences
x = (x1, . . . , xq) and y = (y1, . . . , yq) of (In)∗q, we will write P (x) = y to mean that P (xi) = yi

for i = 1, . . . , q. Given a tuple of permutations P = (P1, . . . , Pt) ∈ (Pn)t and two sequences
a = (a1, . . . , at) and b = (b1, . . . , bt) of (In)∗q1,...,qt , with ai = (a1

i , . . . , a
qi
i ) and bi = (b1

i , . . . , b
qi
i ),

4 Note however that, as observed by [BKL+12], using P and P−1 for the construction with t = 2 rounds
causes the security to drop to 2n/2, even with three independent keys.
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we will write P (a) = b to mean that Pi(ai) = bi for i = 1, . . . , t (i.e. Pi(aji ) = bji for
j = 1, . . . , qi).

Given a value k ∈ {0, 1}n, ⊕k denotes the mapping x 7→ x⊕k from {0, 1}n to itself. Fix an
integer t ≥ 1. Let P = (P1, . . . , Pt) be a tuple of permutations on {0, 1}n. Then the iterated
Even-Mansour cipher associated with P is the cipher with message space {0, 1}n and key
space ({0, 1}n)t+1 where the permutation associated with key k = (k0, . . . , kt) is defined as
(see Fig. 1):

EMP ,k = ⊕kt ◦ Pt ◦ ⊕kt−1 ◦ · · · ◦ ⊕k1 ◦ P1 ◦ ⊕k0 .

We denote Ωt = (Pn)t × (In)t+1. An element (P , k) of Ωt names a tuple of permutations
and a key for the resulting Even-Mansour cipher.

x P1

k0

P2

k1

Pt y

kt

Fig. 1. The iterated Even-Mansour cipher.

2.2 Distinguishers

We consider distinguishers interacting with systems constituted of t + 1 permutations. A
query to such a system is a triplet (i, b, z) where i ∈ [1; t + 1] names which permutation
is being queried, b is a bit indicating whether the query is forward or backward, and z ∈
{0, 1}n is the actual query to the permutation. The goal of the distinguisher is to tell whether
it is interacting with a tuple of t + 1 uniformly random and independent (URI for short)
permutations (P1, . . . , Pt, Q), or with (P1, . . . , Pt, EMP ,k) where (P1, . . . , Pt) are URI and EMP ,k

is the Even-Mansour cipher associated with P = (P1, . . . , Pt) with a uniformly random key
k = (k0, . . . , kt). In the following we will refer to the first t permutations of the system as
the inner permutations, by opposition to the last permutation of the system (which may
be an independent random permutation Q or the Even-Mansour cipher EMP ,k) to which we
will refer to as the outer permutation. A (q1, . . . , qt, qe)-distinguisher is a distinguisher that
makes at most qi queries to inner permutation Pi for i = 1, . . . , t and qe queries to the outer
permutation. We will consider only computationally unbounded distinguishers. As usual we
restrict ourself wlog to deterministic distinguishers that never make redundant queries and
always make the maximal number of allowed queries to each permutation of the system.

The way we define chosen-plaintext/-ciphertext and adaptive/non-adaptive distinguishers
is very specific to the context of our work. The qualifier chosen-plaintext/-ciphertext will
only refer to the queries the distinguisher is allowed to make to the outer permutation of the
system (it will always be allowed to make both forward and backward queries to the inner
permutations). As well, adaptivity will only refer to how the distinguisher is allowed to choose
its queries to the outer permutation (it will always be allowed to choose its queries to the
inner permutations adaptively), and also to whether the distinguisher is allowed to query
the inner permutations as a function of the answers received from the outer permutation.
We now give a precise definition of the two types of distinguishers we consider: non-adaptive
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chosen-plaintext (NCPA) distinguishers and adaptive chosen-plaintext and ciphertext (CCA)
distinguishers.

Definition 1. A (q1, . . . , qt, qe)-NCPA-distinguisher runs in two phases:
1. in a first phase, it can only query the inner permutations (P1, . . . , Pt). These queries can be

adaptive, and both forward and backward queries are allowed. During this phase it makes
exactly qi queries to Pi for i = 1, . . . , t;

2. in a second phase, it chooses a tuple of qe non-adaptive5 forward queries x = (x1, . . . , xqe)
to the outer permutation of the system, and receives the corresponding answers.

A (q1, . . . , qt, qe)-CCA-distinguisher is the most general one: it is allowed to make both forward
and backward queries to all permutations of the system, in any order it wishes (in particular
it may interleave queries to the outer permutation and to the inner permutations).

In all the following, the probability of an event E when D interacts with t+1 URI permu-
tations (P1, . . . , Pt, Q) will simply be denoted Pr∗[E], whereas the probability of an event E
when D interacts with (P1, . . . , Pt, EMP ,k), where P = (P1, . . . , Pt) are URI permutations and
the key k is uniformly random, will simply be denoted Pr[E]. With these notations, the advan-
tage of a distinguisher D is defined as |Pr[D(1n) = 1]− Pr∗[D(1n) = 1]| (we omit the oracles
in this notation since they can be deduced from the notation Pr[·] or Pr∗[·]). The maximum
advantage of a (q1, . . . , qt, qe)-ATK-distinguisher against the iterated Even-Mansour cipher
with t rounds (where ATK is NCPA or CCA) will be denoted Advatk

EM[t](q1, . . . , qt, qe). When
considering distinguishers making at most q queries in total, we simply denote Advatk

EM[t](q).

Remark 1. We warn that our NCPA-security notion should not be considered as interesting
in itself, but rather as a preliminary step towards proving CCA-security. The reason why it
is rather artificial is that once the distinguisher has received the answers to its queries to
the outer permutation, it is not allowed to query the inner permutations any more. This is
not satisfying since these permutations are public primitives, and hence adversaries should be
allowed to query them in their entire discretion.

2.3 Total Variation Distance and Coupling
Given a finite event space Ω and two probability distributions µ and ν defined on Ω, the total
variation distance (or statistical distance) between µ and ν, denoted ‖µ− ν‖ is defined as:

‖µ− ν‖ = 1
2
∑
x∈Ω
|µ(x)− ν(x)| .

The following definitions can easily be seen equivalent:

‖µ− ν‖ = max
S⊂Ω
{µ(S)− ν(S)} = max

S⊂Ω
{ν(S)− µ(S)} = max

S⊂Ω
{|µ(S)− ν(S)|} .

A coupling of µ and ν is a distribution λ on Ω×Ω such that for all x ∈ Ω,
∑
y∈Ω λ(x, y) =

µ(x) and for all y ∈ Ω,
∑
x∈Ω λ(x, y) = ν(y). In other words, λ is a joint distribution whose

marginal distributions are resp. µ and ν. The fundamental result of the coupling technique is
the following one. For completeness, we provide the proof in Appendix A.

5 By non-adaptive we mean that all queries have to be chosen before receiving any corresponding answer
from the outer permutation. However the choice of x may depend on the answers received from the inner
permutations during the first phase.
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Lemma 1 (Coupling Lemma). Let µ and ν be probability distributions on a finite event
space Ω, let λ be a coupling of µ and ν, and let (X,Y ) ∼ λ ( i.e. (X,Y ) is a random variable
sampled according to distribution λ). Then ‖µ− ν‖ ≤ Pr[X 6= Y ].

For the analysis of CCA attacks, we will rely on the following observation.

Lemma 2. Let Ω be some finite event space and ν be the uniform probability distribution on
Ω. Let µ be a probability distribution on Ω such that ‖µ− ν‖ ≤ ε. Then there is a set S ⊂ Ω
such that:

– |S| ≥ (1−
√
ε)|Ω|

– ∀x ∈ S, µ(x) ≥ (1−
√
ε)ν(x)

Proof. Define S = {x ∈ Ω : µ(x) ≥ (1 −
√
ε)ν(x)}. We will show that |S| ≥ (1 −

√
ε)|Ω|.

Assume for contradiction that |S| < (1−
√
ε)|Ω|, or equivalently |S̄| >

√
ε|Ω|, i.e. ν(S̄) >

√
ε.

By definition, for any x ∈ S̄, ν(x)− µ(x) >
√
εν(x). Consequently,

ν(S̄)− µ(S̄) >
√
εν(S̄) > (

√
ε)2 = ε ,

a contradiction with ‖µ− ν‖ ≤ ε. ut

3 Security Against Non-Adaptive Distinguishers

In this section, we start with dealing with NCPA-distinguishers. The crucial point will be
to upper bound the statistical distance between the outputs of the iterated Even-Mansour
cipher conditioned on partial information on the inner permutations (namely P (a) = b for
some tuples a, b ∈ (In)∗q1,...,qt) and the uniform distribution on (In)∗qe . We introduce the
following important definitions and notations.

Definition 2. Let q1, . . . , qt, qe be positive integers. Fix tuples a, b ∈ (In)∗q1,...,qt and x ∈
(In)∗qe. We denote µx(·|P (a) = b) the distribution of EMP ,k(x) conditioned on the event
P (a) = b ( i.e. when the key k = (k0, . . . , kt) is uniformly random and the permutations
P = (P1, . . . , Pt) are uniformly random among permutations satisfying P (a) = b). We also
denote µ∗qe = 1/(N)qe the uniform distribution on (In)∗qe.

We have the following expression for µx(·|P (a) = b).

Lemma 3. Let a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe. Then for any y ∈ (In)∗qe one has:

µx(y|P (a) = b) = #{(P , k) ∈ Ωt : P (a) = b ∧ EMP ,k(x) = y}
|Ωt|/

∏t
i=1(N)qi

.

Proof. This follows easily from the observation that the number of (P , k) ∈ Ωt such that
P (a) = b is |Ωt|/

∏t
i=1(N)qi . ut

The following lemma states that the advantage of a NCPA-distinguisher is upper-bounded
by the total variation distance between µx(·|P (a) = b) and µ∗qe . This is a classical result
regarding the advantage of the best NCPA-distinguisher for a pseudorandom permutation,
however we need to adapt it here to fit the random permutation model.
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Lemma 4. Let q1, . . . , qt, qe be positive integers. Assume that there exists α such that for any
tuples a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe, one has

‖µx(·|P (a) = b)− µ∗qe‖ ≤ α .

Then Advncpa
EM[t](q1, . . . , qt, qe) ≤ α.

Proof. Fix a (q1, . . . , qt, qe)-NCPA-distinguisher D. Such a distinguisher first queries the inner
permutations (P1, . . . , Pt). Let τ be the resulting transcript, i.e. the ordered sequence of
q1 + . . . + qt queries with the corresponding answer (i, b, z, z′), where i ∈ [1; t] names which
permutation is being queried, b is a bit indicating whether the query is forward or backward,
z ∈ {0, 1}n is the actual query and z′ the answer. Let also Φ be the function that maps
a tuple of permutations P = (P1, . . . , Pt) to the transcript of the first phase of the attack
when D interacts with (P1, . . . , Pt, ∗), where ∗ is either an independent random permutation
Q or EMP ,k (this is clearly irrelevant since D does not query the outer permutation during
the first phase of the attack). We say that a transcript τ is consistent if there exists a tuple
of permutations P such that Φ(P ) = τ , and we denote Γ the set of consistent transcripts.
Finally, from a consistent transcript τ , we build the sequences a(τ), b(τ) ∈ (In)∗q1,...,qt as
follows: let (i, b, z, z′) be the j-th query and corresponding answer to Pi in the transcript. If
this is a forward query (b = 0), then we define aji = z and bji = z′; else, when this is a backward
query (b = 1), we define aji = z′ and bji = z. Note that for a consistent transcript τ , Φ(P ) = τ
iff P (a(τ)) = b(τ). The number of consistent transcripts can be exactly determined:

|Γ | =
t∏
i=1

(N)qi . (1)

This can be easily seen as follows. The first query of D is fixed in all executions. Assume wlog
that this is a query to P1. There are exactly N possible answer. The next query is determined
by the answer received to the first query. If this is again a query to P1, there are now N − 1
possible answers, whereas if this a query to Pi, i 6= 1, there are N possible answers. This can
be easily extended by induction to obtain the above claim.

The tuple of non-adaptive plaintext queries x = (x1, . . . , xqe) ∈ (In)∗qe of D to the outer
permutation is a deterministic function of the transcript τ of the first phase of the attack.
Let Ψ denote the function which maps a consistent transcript τ to the corresponding tuple of
queries. The output of D is then a deterministic function of τ and the answers y = (y1, . . . , yqe)
received from the outer permutation to the tuple of queries Ψ(τ). For any consistent transcript
τ , we denote Στ the set of tuples y such that D outputs 1 when receiving answers y to the
queries Ψ(τ). Then, by definition we have:

Pr∗[D(1n) = 1] =
∑
τ∈Γ

∑
y∈Στ

#{(P , Q) ∈ (Pn)t+1 : Φ(P ) = τ ∧Q(Ψ(τ)) = y}
|Pn|t+1

=
∑
τ∈Γ

∑
y∈Στ

#{(P , Q) ∈ (Pn)t+1 : P (a(τ)) = b(τ) ∧Q(Ψ(τ)) = y}
|Pn|t+1

=
∑
τ∈Γ

∑
y∈Στ

1
(N)qe

∏t
i=1(N)qi

. (2)
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Also, we have:

Pr[D(1n) = 1] =
∑
τ∈Γ

∑
y∈Στ

#{(P , k) ∈ Ωt : Φ(P ) = τ ∧ EMP ,k(Ψ(τ)) = y}
|Ωt|

. (3)

We now use the assumption that, for all tuples a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe , one has
‖µx(·|P (a) = b) − µ∗qe‖ ≤ α. By Lemma 3, this exactly means that for all tuples a, b, x and
any subset S ⊂ (In)∗qe , one has:∣∣∣∣∣∣

∑
y∈S

#{(P , k) ∈ Ωt : P (a) = b ∧ EMP ,k(x) = y}
|Ωt|/

∏t
i=1(N)qi

−
∑
y∈S

1
(N)qe

∣∣∣∣∣∣ ≤ α .

For any τ ∈ Γ we can apply the above inequality with (a, b) = (a(τ), b(τ)), x = Ψ(τ), and
S = Στ to get:

∣∣∣∣∣ ∑
y∈Στ

#{(P , k) ∈ Ωt : P (a(τ)) = b(τ) ∧ EMP ,k(Ψ(τ)) = y}
|Ωt|

−

∑
y∈Στ

1
(N)qe

∏t
i=1(N)qi

∣∣∣∣∣ ≤ α∏t
i=1(N)qi

. (4)

Combining Eqs. (2-3-4), and using that for a consistent transcript τ , Φ(P ) = τ iff P (a(τ)) =
b(τ), we obtain:

|Pr[D(1n) = 1]− Pr∗[D(1n) = 1]| ≤
∑
τ∈Γ

α∏t
i=1(N)qi

.

Finally, we deduce using Eq. (1) that the advantage of D is less than α, which concludes the
proof. ut

The rest of this section is devoted to establishing an appropriate upper bound α for
‖µx(·|P (a) = b)− µ∗qe‖ as required to apply Lemma 4. The following lemma can be regarded
as the main contribution of this work.

Lemma 5. Let q1, . . . , qt, qe be positive integers. Fix tuples a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe.
Then:

‖µx(·|P (a) = b)− µ∗qe‖ ≤ 2t qe
∏t
i=1 qi
N t

.

Proof. Fix tuples a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe , with x = (x1, . . . , xqe). For each ` ∈ [0; qe],
let (z1, . . . , zqe) be a tuple of queries such that zi = xi for i ≤ `, and zi is uniformly random
in {0, 1}n \ {z1, . . . , zi−1} for i > `. Denote ν` the distribution of the tuple of qe outputs when
EMP ,k receives inputs (z1, . . . , zqe), conditioned on P (a) = b. Note that ν0 = µ∗qe since for
` = 0 the tuple of inputs is uniformly random in (In)∗qe , and νqe = µx(·|P (a) = b). Hence we
have:

‖µx(·|P (a) = b)− µ∗qe‖ = ‖νqe − ν0‖ ≤
qe−1∑
l=0
‖ν`+1 − ν`‖ . (5)

9



It remains to upper bound the total variation distance between ν`+1 and ν`, for each
` ∈ [0; qe − 1]. For this, we will construct a suitable coupling of the two distributions. Note
that we only have to consider the first ` + 1 elements of the two tuples of outputs since for
both distributions, the i-th inputs for i > ` + 1 are sampled at random. In other words,
‖ν`+1− ν`‖ = ‖ν ′`+1− ν ′`‖, where ν ′`+1 and ν ′` are the respective distributions of the `+ 1 first
outputs of the cipher. To define the coupling of ν ′`+1 and ν ′`, we consider the iterated Even-
Mansour cipher EMP ,k, where P satisfies P (a) = b, that receives inputs x′ = (x1, . . . , x`+1),
so that EMP ,k(x′) is distributed according to ν ′`+1. We will construct a second Even-Mansour
cipher EMP ′,k′ , with inputs u = (u1, . . . , u`+1), satisfying the following properties:
1) ui = xi for i = 1, . . . , `, and u`+1 is uniformly random in {0, 1}n \ {u1, . . . , u`};
2) for i = 1, . . . , ` + 1, if the outputs of the j-th inner permutation in the computations of

EMP ,k(xi) and EMP ′,k′(ui) are equal, then this also holds for any subsequent inner permu-
tation;

3) P ′ is uniformly random among permutation tuples satisfying P ′(a) = b and k′ is uniformly
random in (In)t+1.

Note that properties 1) and 3) will ensure that EMP ′,k′(u) is distributed according to ν ′`. We
warn that (P ′, k′) will not be independent from (P , k), however this is not required for the
Coupling Lemma to apply. The only requirement is that both (P , k) and (P ′, k′) have the
correct marginal distribution.

We now describe how the second iterated Even-Mansour cipher is constructed. First, it
uses exactly the same keys as the original one, namely k′ = (k0, . . . , kt). In order to construct
permutations P ′ (on points encountered when computing EMP ′,k′(u)), we compare the com-
putations of EMP ,k(xi) and EMP ′,k′(ui) for i = 1, . . . , `+ 1. For j = 1, . . . , t, we define xij as the
output of Pj when computing EMP ,k(xi), and similarly uij as the output of P ′j when computing
EMP ′,k′(ui), i.e.

xij = Pj(kj−1 ⊕ Pj−1(· · ·P1(xi ⊕ k0) · · · ))
and uij = P ′j(kj−1 ⊕ P ′j−1(· · ·P ′1(ui ⊕ k0) · · · )) .

We also let xi0 = xi and ui0 = ui. For j = 0, . . . , t− 1 we use the following rules:
i) if uij ⊕ kj ∈ aj+1, then uij+1 = P ′j+1(uij ⊕ kj) is determined by the constraint P ′(a) = b;
ii) if uij ⊕ kj /∈ aj+1 and xij ⊕ kj ∈ aj+1, then we choose uij+1 = P ′j+1(uij ⊕ kj) uniformly at

random in {0, 1}n \ (bj+1 ∪ {u1
j+1, . . . , u

i−1
j+1});

iii) if uij ⊕ kj /∈ aj+1 and xij ⊕ kj /∈ aj+1, then we define uij+1 = xij+1, that is P ′j+1(uij ⊕ kj) =
Pj+1(xij ⊕ kj).

Property 2) can easily be seen to follow from these rules and the fact that the keys are
the same in both ciphers. Since P is uniformly random among permutation tuples satisfying
P (a) = b, so is P ′. This follows from the fact that when using rule iii), xij ⊕ kj /∈ aj+1 implies
that xij+1 is uniformly random in {0, 1}n\(bj+1∪{x1

j+1, . . . , x
i−1
j+1}), and hence uij+1 is uniformly

random in {0, 1}n \ (bj+1 ∪ {u1
j+1, . . . , u

i−1
j+1}) as well. This justifies Property 3). Hence, the

joint distribution probability we created for the random variable (EMP ,k(x′), EMP ′,k′(u)) is such
that the marginal distributions of EMP ,k(x′) and EMP ′,k′(u) are respectively ν ′`+1 and ν ′`. We
can now apply Lemma 1 to obtain:

‖ν`+1 − ν`‖ = ‖ν ′`+1 − ν ′`‖ ≤ Pr
[
(x1
t , . . . , x

`+1
t ) 6= (u1

t , . . . , u
`+1
t )

]
10



where we used EMP ,k(xi) = xit⊕ kt+1 and EMP ′,k′(ui) = uit⊕ kt+1. Clearly, the rules (combined
with the fact that ui = xi for i = 1, . . . , `) imply that uij = xij for i = 1, . . . , ` and j = 0, . . . , t,
so that the above expression simplifies to ‖ν`+1 − ν`‖ ≤ Pr[x`+1

t 6= u`+1
t ]. Hence, we are left

with the task of upper-bounding the probability not to equate x`+1
j and u`+1

j in any of the t
rounds.

Consider the first round. Unless we have u`+1
0 ⊕ k0 ∈ a1 or x`+1

0 ⊕ k0 ∈ a1, we will use rule
iii) so that we will have u`+1

1 = x`+1
1 . Since the size of a1 is q1, and k0 is uniformly random, we

see that Pr[x`+1
1 6= u`+1

1 ] ≤ 2q1/N . Assume now that x`+1
j 6= u`+1

j for some j ∈ [1; t − 1]. As
in the preceding case, unless u`+1

j ⊕ kj ∈ aj+1 or x`+1
j ⊕ kj ∈ aj+1, we will have u`+1

j+1 = x`+1
j+1,

so that Pr[x`+1
j+1 6= u`+1

j+1|x
`+1
j 6= u`+1

j ] ≤ 2qj+1/N . Using a chain of conditional probabilities,
we get:

‖ν`+1 − ν`‖ ≤ Pr[x`+1
t 6= u`+1

t ] ≤ 2q1
N
· 2q2
N
· · · 2qt

N
= 2t

∏t
i=1 qi
N t

.

Finally, using Eq. (5), we see that

‖µx(·|P (a) = b)− µ∗qe‖ = ‖νqe − ν0‖ ≤ 2t qe
∏t
i=1 qi
N t

,

as claimed. ut

Remark 2. It can easily be checked that the final key kt does not play any role in the proof
of Lemma 5. Hence it also holds for iterated Even-Mansour cipher without the last key.

Remark 3. The proof of Lemma 5 can be straightforwardly extended to handle distinguishers
that are allowed to make both forward and backward queries to the outer permutation, in
a non-adaptive way (such adversaries could be named NCCA). However, notations become
quite cumbersome, so that we omit the details.

Combining Lemmata 4 and 5, we obtain the following theorem.

Theorem 1. Let q1, . . . , qt, qe be positive integers. Then:

Advncpa
EM[t](q1, . . . , qt, qe) ≤ 2t qe

∏t
i=1 qi
N t

.

In particular, for any positive integer q:

Advncpa
EM[t](q) ≤ 2t q

t+1

N t
.

This remains true for the iterated Even-Mansour cipher where the last key kt is omitted.

More concretely, the iterated Even-Mansour cipher with t rounds achieves NCPA-security up
to N

t
t+1 queries. This is optimal (neglecting constant factors) considering the attack described

in [BKL+12].
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4 From Non-Adaptive to Adaptive Distinguishers

In this section, we turn to the case of CCA-distinguishers. For this, we will need the following
refinement to Lemma 4, which relies on a stronger assumption on the distribution of the
outputs of the iterated Even-Mansour cipher.

Lemma 6. Let q1, . . . , qt, qe be positive integers. Assume that there exists β such that for any
tuples a, b ∈ (In)∗q1,...,qt and x, y ∈ (In)∗qe, one has

Pr[P (a) = b ∧ EMP ,k(x) = y] ≥ 1− β
(N)qe

∏t
i=1(N)qi

.

Then Advcca
EM[t](q1, . . . , qt, qe) ≤ β.

Proof. The proof is very similar to the one of Lemma 4. Fix a (q1, . . . , qt, qe)-CCA-distinguisher
D. Let τ be the transcript of the interaction of D with the system of t+ 1 permutations, i.e.
the ordered sequence of q1 + . . . + qt + qe queries with the corresponding answer (i, b, z, z′),
where i ∈ [1; t + 1] names which permutation is being queried, b is a bit indicating whether
the query is forward or backward, z ∈ {0, 1}n is the actual query and z′ the answer. Let also
Φ be the function that maps a tuple of permutations (P , Pt+1) ∈ (Pn)t+1 to the transcript
of the attack when D interacts with (P , Pt+1). We say that a transcript is consistent if there
exists a tuple of permutations (P , Pt+1) such that Φ(P , Pt+1) = τ , and we denote Γ the
set of consistent transcripts. Finally, from a consistent transcript τ , we build the sequences
a(τ), b(τ) ∈ (In)∗q1,...,qt and x(τ), y(τ) ∈ (In)∗qe as follows. For i = 1, . . . , t, let (i, b, z, z′) be
the j-th query and corresponding answer to Pi in the transcript. If this is a forward query
(b = 0), then we define aji = z and bji = z′; else, when this is a backward query (b = 1), we
define aji = z′ and bji = z. Similarly, let (t + 1, b, z, z′) be the j-th query and corresponding
answer to the outer permutation Pt+1 in the transcript. If this is a forward query (b = 0),
then we define xj = z and yj = z′; else, when this is a backward query (b = 1), we define
xj = z′ and yj = z. Note that for a consistent transcript τ , Φ(P , Pt+1) = τ iff P (a(τ)) = b(τ)
and Pt+1(x(τ)) = y(τ).

The output of D is a deterministic function of the transcript. We let Σ denote the set of
consistent transcripts τ such that D outputs 1 when the transcript is τ . Then, by definition
we have:

Pr∗[D(1n) = 1] =
∑
τ∈Σ

#{(P , Q) ∈ (Pn)t+1 : Φ(P , Q) = τ}
|Pn|t+1

=
∑
τ∈Σ

#{(P , Q) ∈ (Pn)t+1 : P (a(τ)) = b(τ) ∧Q(x(τ)) = y(τ)}
|Pn|t+1

=
∑
τ∈Σ

1
(N)qe

∏t
i=1(N)qi

. (6)

Also, we have:

Pr[D(1n) = 1] =
∑
τ∈Σ

#{(P , k) ∈ Ωt : Φ(P , EMP ,k) = τ}
|Ωt|

=
∑
τ∈Σ

Pr [P (a(τ) = b(τ) ∧ EMP ,k(x(τ)) = y(τ)] . (7)
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Using the assumption and Eq. (6), we see that:

Pr[D(1n) = 1] ≥
∑
τ∈Σ

1− β
(N)qe

∏t
i=1(N)qi

= (1− β)Pr∗[D(1n) = 1] ,

so that Pr∗[D(1n) = 1]−Pr[D(1n) = 1] ≤ β. Applying the same reasoning to the distinguisher
D′ which outputs the negation of D’s output, we obtain

(1− Pr∗[D(1n) = 1])− (1− Pr[D(1n) = 1]) ≤ β ,

which implies that the advantage of D is at most β. This concludes the proof. ut

We will now derive an appropriate bound β refining Lemma 5 by doubling the number of
rounds of the construction and using Lemma 2.

Lemma 7. Let t be an even integer and t′ = t/2. Let q1, . . . , qt, qe be positive integers. We
denote:

α1 = 2t′ qe
∏t′
i=1 qi
N t′

and α2 = 2t′
qe
∏t
i=t′+1 qi
N t′

.

Then for any tuples a, b ∈ (In)∗q1,...,qt and x, y ∈ (In)∗qe, one has

Pr[P (a) = b ∧ EMP ,k(x) = y] ≥ 1− β
(N)qe

∏t
i=1(N)qi

,

where β = 2(√α1 +√α2).

Proof. First, we slightly modify how the Even-Mansour cipher with 2t′ rounds is defined
in order to write it as the composition of two Even-Mansour ciphers with t′ rounds. For
this, we write the middle key kt′ between permutations Pt′ and Pt′+1 as the xor of two
independent keys k1

t′ and k2
t′ , and we redefine EMP ,k where P = (P1, . . . , P2t′) ∈ (Pn)2t′ and

k = (k0, . . . , kt′−1, k
1
t′ , k

2
t′ , kt′+1, . . . , k2t′) ∈ (In)2t′+2, as:

EMP ,k = ⊕k2t′ ◦ P2t′ ◦ ⊕k2t′−1 ◦ · · · ◦ Pt′+1 ◦ ⊕k2
t′︸ ︷︷ ︸

EMP2,k̃2

◦⊕k1
t′
◦ Pt′ ◦ · · · ◦ ⊕k1 ◦ P1 ◦ ⊕k0︸ ︷︷ ︸

EMP1,k̃1

.

Clearly, this does not change the quantity Pr[P (a) = b ∧ EMP ,k(x) = y] since k1
t′ ⊕ k2

t′ is uni-
formly distributed when k1

t′ and k2
t′ are. This enables to write EMP ,k = EMP2,k̃2

◦EMP1,k̃1
, where

P1 = (P1, . . . , Pt′), P2 = (Pt′+1, . . . , P2t′), k̃1 = (k0, . . . , kt′−1, k
1
t′), k̃2 = (k2

t′ , kt′+1, . . . , k2t′).
In the following we denote Ω̃2t′ = (Pn)2t′ × (In)2t′+2. Note that |Ω̃2t′ | = |Ωt′ |2.

Fix tuples a, b ∈ (In)∗q1,...,qt and x, y ∈ (In)∗qe . We denote ã1 = (a1, . . . , at′), ã2 =
(at′+1, . . . , a2t′), b̃1 = (b1, . . . , bt′), and b̃2 = (bt′+1, . . . , b2t′). We will apply Lemma 2 inde-
pendently to each half of the cipher EMP1,k̃1

and EMP2,k̃2
. Consider the first half EMP1,k̃1

. By
Lemma 5, we have ‖µ1

x(·|P1(ã1) = b̃1) − µ∗qe‖ ≤ α1, where µ1
x(·|P1(ã1) = b̃1) is the distribu-

tion of EMP1,k̃1
(x) conditioned on P1(ã1) = b̃1. Hence Lemma 2 ensures that there is a subset

Sx ⊂ (In)∗qe of size at least (1−√α1)(N)qe such that for all z ∈ Sx:

µ1
x(z|P1(ã1) = b̃1) =

#{(P1, k̃1) ∈ Ωt′ : P1(ã1) = b̃1 ∧ EMP1,k̃1
(x) = z}

|Ωt′ |/
∏t′
i=1(N)qi

≥ (1−
√
α1) 1

(N)qe
.
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Applying a similar reasoning to the distribution µ2
y(·|P2(ã2) = b̃2) of EM−1

P2,k̃2
(y) conditioned

on P2(ã2) = b̃2, we see that there exits a subset Sy ⊂ (In)∗qe of size at least (1−√α2)(N)qe
such that for all z ∈ Sy:

µ2
y(z|P2(ã2) = b̃2) =

#{(P2, k̃2) ∈ Ωt′ : P2(ã2) = b̃2 ∧ EM−1
P2,k̃2

(y) = z}

|Ωt′ |/
∏t
i=t′+1(N)qi

≥ (1−
√
α2) 1

(N)qe
.

We can now lower-bound the number of (P , k) ∈ Ω̃2t′ satisfying P (a) = b and EMP ,k(x) = y by
summing, over all intermediate values z ∈ Sx∩Sy, the product of the number of (P1, k̃1) ∈ Ωt′
satisfying P1(ã1) = b̃1 and EMP1,k̃1

(x) = z times the the number of (P2, k̃2) ∈ Ωt′ satisfying
P2(ã2) = b̃2 and EMP2,k̃2

(z) = y. Combining the two above equations yields:

#{(P , k) ∈ Ω̃2t′ : P (a) = b ∧ EMP ,k(x) = y} ≥
|Sx ∩ Sy|(1−

√
α1)(1−√α2)|Ωt′ |2

((N)qe)2∏t
i=1(N)qi

.

Finally, noting that |Sx∩Sy| ≥ (1−√α1−
√
α2)(N)qe , dividing both terms by |Ωt′ |2 = |Ω̃2t′ |,

and using
(1−

√
α1 −

√
α2)(1−

√
α1)(1−

√
α2) ≥ 1− 2(

√
α1 +

√
α2) ,

we obtain:
Pr[P (a) = b ∧ EMP ,k(x) = y] ≥ 1− β

(N)qe
∏t
i=1(N)qi

,

with β = 2(√α1 +√α2), which concludes the proof. ut

Combining Lemmata 6 and 7, we finally obtain our main theorem.

Theorem 2. Let t be an even integer and t′ = t/2. Let q1, . . . , qt, qe be positive integers.
Then:

Advcca
EM[t](q1, . . . , qt, qe) ≤

(
2t′+2qe

∏t′
i=1 qi

N t′

)1/2

+
(

2t′+2qe
∏t
i=t′+1 qi

N t′

)1/2

.

In particular, for any positive integer q:

Advcca
EM[t](q) ≤ 2t/4+3 q

(t+2)/4

N t/4 .

For odd t, we have Advcca
EM[t] ≤ Advcca

EM[t−1], so that we can use the above bounds with t− 1.

More concretely, the iterated Even-Mansour cipher with t rounds achieves CCA-security up
to N

t
t+2 queries.
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A Proof of the Coupling Lemma

The original statement and proof of the Coupling Lemma is due to Aldous [Ald83]. Here we
follow closely a proof by Vigoda.6

Let λ be a coupling of µ and ν, and (X,Y ) ∼ λ. By definition, we have that for any z ∈ ω,
λ(z, z) ≤ min{µ(z), ν(z)}. Moreover, Pr[X = Y ] =

∑
z∈Ω λ(z, z). Hence we have:

Pr[X = Y ] ≤
∑
z∈Ω

min{µ(z), ν(z)} .

Therefore:

Pr[X 6= Y ] ≥ 1−
∑
z∈Ω

min{µ(z), ν(z)}

=
∑
z∈Ω

(µ(z)−min{µ(z), ν(z)})

=
∑
z∈Ω

µ(z)≥ν(z)

(µ(z)− ν(z))

= max
S⊂Ω
{µ(S)− ν(S)}

= ‖µ− ν‖ .

B An Elementary Proof for t = 1

In this section, we give a simple proof of the following fact (which is in fact Theorem 3.1
of [KR01] in the special case where κ = 0) .

Theorem 3. Let q1, qe be positive integers. Then:

Advcca
EM[1](q1, qe) ≤

2q1qe
N

.

For this, we will use the following result, coupled with Lemma 6.

Lemma 8. For any tuples a1, b1 ∈ (In)∗q1 and x, y ∈ (In)∗qe, we have:

Pr[P1(a1) = b1 ∧ EMP1,(k0,k1)(x) = y] ≥ 1− 2q1qe/N

(N)q1(N)qe
.

We now prove the above lemma. Fix tuples a1 = (a1
1, . . . , a

q1
1 ), b1 = (b1

1, . . . , b
q1
1 ), x =

(x1, . . . , xqe) and y = (y1, . . . , yqe). Following [EM97], we introduce the following definition.

Definition 3. We say that a pair of keys (k0, k1) is good if{
k0 /∈ {xi ⊕ aj1, i ∈ [1; qe], j ∈ [1; q1]}
k1 /∈ {yi ⊕ bj1, i ∈ [1; qe], j ∈ [1; q1]}

and bad otherwise.
6 Available from www.cc.gatech.edu/~vigoda/MCMC_Course/MC-basics.pdf.
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There are at most qeq1 bad values for k0, and also for k1, so that the number of good pair
of keys is at least:

(N − qeq1)(N − qeq1) ≥ (N2 − 2Nq1qe) .

Fix a good pair of keys (k0, k1). We now count the number of permutations P1 such that
P1(a1) = b1 and EMP1,(k0,k1)(x) = y. Equations P1(a1) = b1 put q1 constraints on P1. Since
the pair (k0, k1) is good, equations EMP1,(k0,k1)(x) = y put qe additional (distinct) constraints
on P1. Hence the number of permutations is exactly N !/(N)q1+qe . Summing over all pair of
good keys, we see that:

Pr[P1(a1) = b1 ∧ EMP1,(k0,k1)(x) = y] =
#{(P1, k0, k1) : P1(a1) = b1 ∧ EMP1,(k0,k1)(x) = y}

N2 ·N !

≥ (N2 − 2Nq1qe)N !/(N)q1+qe
N2 ·N !

≥ 1− 2q1qe/N

(N)q1(N)qe
,

where we used (N)q1+qe ≤ (N)q1(N)qe . This concludes the proof.
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