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Summary

Summary

We show how to construct an ideal cipher from a small set of n-bit
public random permutations {P1, . . . ,Pr}
The construction we consider is the single-key iterated Even-Mansour
cipher (aka key-alternating cipher) with 12 rounds:
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⇒ this yields a family of 2n permutations indexed by the n-bit key k
from only 12 public n-bit permutations
We show that this construction “behaves” as an ideal cipher with n-bit
blocks and n-bit keys using the indifferentiability framework
We also show that at least 4 rounds are necessary to achieve
indifferentiability from an ideal cipher
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Outline

1 Background on the Iterated Even-Mansour Cipher

2 Indifferentiability of the IEM cipher
Formalizing the problem
Which key schedule?
At least 4 rounds are necessary

3 Indifferentiability proof for 12 rounds
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Background on the Iterated Even-Mansour Cipher

Iterated Even-Mansour cipher (aka key-alternating cipher)

Iterated Even-Mansour (IEM) with r rounds:

x P1
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The Pi ’s are public permutations on {0, 1}n

K ∈ {0, 1}` is the (master) key
The γi ’s are key derivation functions mapping K to n-bit values

Also named key-alternating cipher
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Background on the Iterated Even-Mansour Cipher

Iterated Even-Mansour cipher (aka key-alternating cipher)

Most (if not all) SPN ciphers can be described as key-alternating ciphers.
E.g. for AES-128, one has r = 10, the γi ’s are efficiently invertible
permutations, and:

P1 = . . . = P9 = SubBytes ◦ ShiftRows ◦ MixColumns

P10 = SubBytes ◦ ShiftRows

When the Pi ’s are fixed permutations, one can prove results like:
the best differential characteristic over r ′ < r rounds has probability
at most p
the best linear approximation over r ′ < r rounds has probability at
most p′

This gives upper bounds on the distinguishing probability of very specific
adversaries
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Background on the Iterated Even-Mansour Cipher

Analysis in the Random Permutation Model (RPM)

Recently, a lot of results have been obtained in the Random Permutation
Model: the Pi ’s are viewed as oracles to which the adversary can make
black-box queries (both to Pi and P−1i ).

Interpretation: gives a guarantee against any adversary which does not use
particular properties of the Pi ’s

In fact, this model was already considered 15 years ago by Even and
Mansour for r = 1 round: they showed that the following cipher is
pseudorandom up to O(2n/2) queries of the adversary, when P1 is a public
random permutation:

x P1

k0
y

k1
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Background on the Iterated Even-Mansour Cipher

Pseudorandomness of the IEM cipher (in the RPM)

The following results have been successively obtained for the
pseudorandomness of the IEM cipher (notation: N = 2n):

for r = 1 round, security up to O(N 1
2 ) queries [EM97]

for r ≥ 2, security up to O(N 2
3 ) queries [BKL+12]

for r ≥ 3, security up to O(N 3
4 ) queries [Ste13]

for any even r , security up to O(N
r

r+2 ) queries [LPS12]
tight result: for r rounds, security up to O(N

r
r+1 ) queries [CS13]

Results for independent round keys (k0, k1, . . . , kr )

x P1

k0
P2

k1
Pr y

kr
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Indifferentiability of the IEM cipher

Outline

1 Background on the Iterated Even-Mansour Cipher

2 Indifferentiability of the IEM cipher
Formalizing the problem
Which key schedule?
At least 4 rounds are necessary

3 Indifferentiability proof for 12 rounds
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Indifferentiability of the IEM cipher Formalizing the problem

From indistinguishability to indifferentiability

Previous results state that the IEM cipher is a (strong) pseudorandom
permutation (in the random permutation model)
= usual single, secret-key security model

Question
What about related-, known- or chosen-key attacks?
Can we even hope to prove that the IEM “behaves” as (is indifferentiable
from) an ideal cipher?

Ideal cipher: an independent random permutation for each key
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Indifferentiability of the IEM cipher Formalizing the problem

A word on the ideal cipher model

the pseudorandomness security notion for a block cipher is sufficient to
prove the security of a lot of applications (encryption modes and MACs)

however, sometimes it is not sufficient (e.g. for block cipher-based hash
functions like Davies-Meyer mode)

ideally, one expects that a good block cipher “behaves” as an
independent random permutation for each key
→ ideal cipher model: draw an independent perfectly random
permutation for each key
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Indifferentiability of the IEM cipher Formalizing the problem

A word on the ideal cipher model

similar to the random oracle model for a hash function

warning: instantiation problems as well (no concrete block cipher can be
proved to be an ideal cipher in any reasonable sense)

though we cannot prove that a block cipher behaves as an ideal cipher
in the standard model, we can prove results in idealized models (e.g. the
Random Permutation Model in the case of the IEM cipher)
→ indifferentiability notion [MRH04]
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Indifferentiability of the IEM cipher Formalizing the problem

Indifferentiability: definition

Definition
The IEM cipher IEMP1,...,Pr with random permutations P = (P1, . . . ,Pr ) is
said indifferentiable from an ideal cipher E if there exists a polynomial
time simulator S with oracle access to E such that the two systems
(IEMP ,P) and (E ,SE ) are indistinguishable.

D

0/1

IEMP1,...,Pr

(K , x/y)

P1 · · · Pr

D

0/1

E

(K , x/y)

P1 · · · Pr

Simulator S
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Indifferentiability of the IEM cipher Formalizing the problem

Indifferentiability: definition

NB: The distinguisher specifies the plaintext/ciphertext and the key when
querying IEMP1,...,Pr or E .

D

0/1

IEMP1,...,Pr

(K , x/y)

P1 · · · Pr

D

0/1

E

(K , x/y)

P1 · · · Pr

Simulator S

The answers of the simulator S must be:
coherent with answers the distinguisher can obtain directly from E
close in distribution to the answers of random permutations
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Indifferentiability of the IEM cipher Formalizing the problem

Composition theorem

Usefulness of indifferentiability: composition theorem

Theorem
If a cryptosystem Γ is secure when used with an ideal cipher E , and if
IEMP1,...,Pr (for sufficiently many rounds) is indifferentiable from E, then Γ
is also secure when used with IEMP1,...,Pr with random permutations
P1, . . . ,Pr (for single-stage security notions).

Main question
Is the Iterated Even-Mansour cipher, for sufficiently many rounds, and
with an adequate key schedule, indifferentiable from an ideal cipher?
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Indifferentiability of the IEM cipher Which key schedule?

Outline

1 Background on the Iterated Even-Mansour Cipher

2 Indifferentiability of the IEM cipher
Formalizing the problem
Which key schedule?
At least 4 rounds are necessary

3 Indifferentiability proof for 12 rounds
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Indifferentiability of the IEM cipher Which key schedule?

Independent round keys fails(!)

x

x ′
P1

k0

k ′0

P2

k1
Pr y

kr

IEM with independent round keys is not indifferentiable from an ideal
cipher with key space {0, 1}(r+1)n because of the following distinguisher:

choose an arbitrary x ∈ {0, 1}n and k0 ∈ {0, 1}n

define x ′ = x ⊕ c and k ′0 = k0 ⊕ c with c a non-zero constant
let K = (k0, k1, . . . , kr ) and K ′ = (k ′0, k1, . . . , kr )

then IEM(K , x) = IEM(K ′, x ′)
this holds only with negligible probability for an ideal cipher
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Indifferentiability of the IEM cipher Which key schedule?

Proving indifferentiability for the IEM cipher

Independent keys leave too much “freedom” to the adversary.

Two ideas to solve the problem:
1 add a key schedule, and put some cryptographic assumption on it
⇒ Andreeva et al. CRYPTO 2013 [ABD+13]

2 restrain the key space and correlate the round keys, e.g. (k, k, . . . , k)
⇒ this paper
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Indifferentiability of the IEM cipher Which key schedule?

The [ABD+13] result

IEM with a key-derivation function modeled as a random oracle from
{0, 1}` to {0, 1}n (that the adversary queries in a black-box way)

x P1

H

K

P2

H

K

Pr y

H

K

→ indifferentiable from an ideal cipher with `-bit keys for r = 5
([ABD+13] gives attacks up to 3 rounds)

Better bounds and less rounds than in this paper.
But the assumption about the key derivation is very strong and far from
concrete designs (the key-schedule is often invertible)
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Indifferentiability of the IEM cipher Which key schedule?

Our approach

We consider the IEM cipher with a single key:

x P1

k
P2

k
Pr y

k

The trivial attack on independent keys does not apply → is it indiff. from
an ideal cipher for sufficiently many rounds ?

Main Result
The single-key IEM with r = 12 rounds is indifferentiable from an ideal
cipher with n-bit blocks and n-bit keys

Also holds when using invertible permutations γi for the key derivation (no
cryptographic assumption needed).
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Indifferentiability of the IEM cipher At least 4 rounds are necessary
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Indifferentiability of the IEM cipher At least 4 rounds are necessary

An attack for 3 rounds

P1 P2 P3

x1

x ′1

y1

y ′1

x2

x ′2

y2

y ′2

x3

x ′3

y3

y ′3

x
x ′′

x ′

x ′′′

y
y ′

y ′′

y ′′′

k k ′ k ′′ k ′′′

One can (easily) find (x , x ′, x ′′, x ′′′), (y , y ′, y ′′, y ′′′) and (k, k ′, k ′′, k ′′′) such
that y = IEM(P1,P2,P3)(k, x), etc. and:

k ⊕ k ′ ⊕ k ′′ ⊕ k ′′′ = 0
x ⊕ x ′ ⊕ x ′′ ⊕ x ′′′ = 0
y ⊕ y ′ ⊕ y ′′ ⊕ y ′′′ = 0 .

Finding such values can be showed to be hard for an ideal cipher.
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One can (easily) find (x , x ′, x ′′, x ′′′), (y , y ′, y ′′, y ′′′) and (k, k ′, k ′′, k ′′′) such
that y = IEM(P1,P2,P3)(k, x), etc. and:

k ⊕ k ′ ⊕ k ′′ ⊕ k ′′′ = 0
x ⊕ x ′ ⊕ x ′′ ⊕ x ′′′ = 0
y ⊕ y ′ ⊕ y ′′ ⊕ y ′′′ = 0 .

Finding such values can be showed to be hard for an ideal cipher.
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Indifferentiability proof for 12 rounds

Outline

1 Background on the Iterated Even-Mansour Cipher

2 Indifferentiability of the IEM cipher
Formalizing the problem
Which key schedule?
At least 4 rounds are necessary

3 Indifferentiability proof for 12 rounds
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Indifferentiability proof for 12 rounds

Reminder: the indifferentiability setting

D

0/1

IEMP1,...,Pr

(k , x/y)

P1 · · · Pr

D

0/1

E

(k , x/y)

P1 · · · Pr

Simulator S
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Indifferentiability proof for 12 rounds

Simulation: general strategy

The simulator must return answers that are
coherent with what the distinguisher can
obtain from the ideal cipher E , i.e.:

IEMP1,...,P12(k, x) = E (k, x)

For this, the simulator must adapt at least
one permutation to “match” what is given
by the ideal cipher.

The general strategy is close to the one used
for the indifferentiability of the Feistel
permutation [CPS08, HKT11].

x

P1

P2

P11

P12

y

k

k

k

k

Ek
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Indifferentiability proof for 12 rounds

Simulation: general strategy

the simulator maintains an history for
each simulated permutation Pi

the simulator detects and completes
“partial chains” = queries to two adjacent
perm. Pi (xi ) = yi and Pi+1(xi+1) = yi+1

for any partial chain the key is uniquely
defined: k = yi ⊕ xi+1

queries to any two consecutive
permutations uniquely define the
computations path in the construction
(not true for independent keys!)

Pi

xi

yi

Pi+1

xi+1

yi+1

k = yi ⊕ xi+1

Pi−1

k

Pi+2

k
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Indifferentiability proof for 12 rounds

Completing a partial chain

P6

x6 y6

P7

x7 y7

k = y6 ⊕ x7

P5

k

P4

k

P3

k

P2

k

P1

k

x

k

E

k

yP12

k

P11

k

P10

kk

y9

P8

k k

x9

P9

Adapt: Force
P9(x9) = y9

when detecting a partial chain, S first completes the chain backward
and forward randomly
it makes a call to E to “wrap around”
it forces P9(x9) = y9 which ensures that IEMP1,...,P12(k, x) = E (k, x).
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Indifferentiability proof for 12 rounds

What could go wrong during simulation

Two problems to deal with:

1 complexity of the simulator:
completing a partial chain creates new chains, which must be
completed, creating new partial chains, etc.
⇒ potential blow-up of the number of chains completed by the
simulator
but the simulator must be polynomial-time!

2 impossibility to adapt:
when the simulator wants to adapt a chain by forcing Pi (xi ) = yi , it
might happen that Pi was already defined for xi or yi
⇒ the simulator cannot remain coherent with E !
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Indifferentiability proof for 12 rounds

Bounding the simulator’s complexity

the simulator only detects and completes partial chains at very specific
places:

central chains: queries to (P6,P7)
external chains: queries to (P1,P2,P11,P12) that matches E

an external chain can be created only if the distinguisher has made the
corresponding query to E
→ only q of them will be completed, which avoids a recursive blow-up
of the simulator

x P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 y

k k k k k k k k k k k k k

E

k D

Detect chainDetect chain Detect chain
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Indifferentiability proof for 12 rounds

Ensuring that the simulator can always adapt

chains are always adapted at P4 or P9

adaptation rounds are surrounded by buffer rounds whose answers are
drawn at random just before adapting
the values (x4, y4) or (x9, y9) used to adapt P4 or P9 are random
⇒ in the history of the simulator only with negl. probability

x P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 y

k k k k k k k k k k k k k

E

k

Detect chainDetect chain Detect chainAdapt Adapt

Set uniform Set uniform Set uniform Set uniform

x4 y4 x9 y9
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Conclusion

Conclusion

Main result
The single-key IEM cipher with 12 rounds is indifferentiable from an ideal
cipher with n-bit keys.

Interpretation of the result:
shows that the general strategy of building block ciphers from SPNs
is sound and may even yield something close to an ideal cipher
says little about concrete block ciphers: e.g. the permutations P1,
. . . , P10 of AES-128 are too simple and not independent
gives heuristic insurance for e.g. an IEM cipher where the Pi ’s are
instantiated with AES used with fixed keys
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Conclusion

Open problems

1 exact number of rounds for indifferentiability?
The indifferentiability proof requires 12 rounds. . .
but the best attack is only on 3 rounds.

Conjecture
The single-key IEM with 3 < r < 12 rounds is indifferentiable from an ideal cipher
with n-bit keys

r = 4 may well be sufficient
(we explain which obstacles appear already for r = 8 in the full paper)

2 construction with 2n-bit keys? (or more generally tn-bit keys with t > 1)

x P1

k1
P2

k2
P3

k1
P2r+1 y

k2
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Thanks

The end. . .

Thanks for your attention!
Comments or questions?
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