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Talk Mainly Based on Joint Work with:

• Jacques Patarin (Versailles Univ.)
• Rodolphe Lampe (Versailles Univ.)
• Benoît Cogliati (Versailles Univ.)
• Jooyoung Lee (Sejong Univ.)
• John Steinberger (Tsinghua Univ.)
• Shan Chen (Tsinghua Univ.)

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 3 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Outline

Introduction and History

Pseudorandomness of Key-Alternating Ciphers

Beyond Pseudorandomness: Related-Key Attacks

Beyond RKAs: Chosen-Key Attacks and Indifferentiability

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 4 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Outline

Introduction and History

Pseudorandomness of Key-Alternating Ciphers

Beyond Pseudorandomness: Related-Key Attacks

Beyond RKAs: Chosen-Key Attacks and Indifferentiability

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 5 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Key-Alternating Cipher (KAC): Definition

x
n

P1 P2 Pr y

k0 k1 kr

k

γ0 γ1 γr

An r -round key-alternating cipher:

• plaintext x ∈ {0, 1}n, ciphertext y ∈ {0, 1}n

• master key k ∈ {0, 1}κ

• the Pi ’s are public permutations on {0, 1}n

• the γi ’s are key derivation functions mapping k to n-bit “round keys”
• examples: most SPNs (AES, SERPENT, PRESENT, LED, . . . )
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Various Key-Schedule Types

x
n

P1 P2 Pr y

k0 k1 kr
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n

γ0 γ1 γr

Round keys can be:

• independent (total key-length κ = (r + 1)n)
• derived from an n-bit master key (κ = n), e.g.

• trivial key-schedule: (k, k, . . . , k)
• more complex: (γ0(k), γ1(k), . . . , γr (k))

• anything else (e.g. 2n-bit master key (k0, k1) and round keys
(k0, k1, k0, k1, . . .) as in LED-128)
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Proving the Security of KACs
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Question
How can we “prove” security?

• against a general adversary:
⇒ too hard (unconditional complexity lower bound!)

• against specific attacks (differential, linear. . . ):
⇒ use specific design of P1, . . . ,Pr (count active S-boxes, etc.)

• against generic attacks:
⇒ Random Permutation Model for P1, . . . ,Pr
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Analyzing KACs in the Random Permutation Model

qc

x
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γ0
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P1 · · · Pr

qp qp

• the Pi ’s are modeled as public random permutation oracles to which
the adversary can only make black-box queries (both to Pi and P−1i )

• adversary cannot exploit any weakness of the Pi ’s ⇒ generic attacks
• trades complexity for randomness (' Random Oracle Model)
• complexity measure of the adversary:

• qc = # queries to the cipher = plaintext/ciphertext pairs (data D)
• qp = # queries to each internal permutation oracle (time T )
• but otherwise computationally unbounded

• ⇒ information-theoretic proof of security
Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 9 / 49
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Analyzing KACs in the Random Permutation Model

Even and Mansour seminal work:
• this model was first proposed by Even and Mansour at
ASIACRYPT ’91 for r = 1 round

• they showed that the simple cipher k1 ⊕ P(k0 ⊕ x) is secure up to
O(2 n

2 ) queries of the adversary to P and to the cipher
• similar result when k0 = k1 [DKS12]

x P
k0

y
k1

︸ ︷︷ ︸
EMP
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A Word on Wording

Even-Mansour Model
=

Random Permutation Model

“the” Iterated Even-Mansour (IEM) Cipher
=

generic class of key-alternating ciphers
analyzed in the Random Permutation Model
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20 Years After

Revival of the approach:

• basically not much progress after ASIACRYPT ’91 until...
• EUROCRYPT 2012 paper by Bogdanov et al.
• they showed that for r = 2 the security bound is pushed back to
O(2 2n

3 ) adversarial queries
• triggered a spate of results
(at least 10 proof papers + 6 cryptanalysis papers)

• Why 20 years?
• the model is far from actual designs (“simple” inner permutations)
• cryptanalysts not interested in generic attacks on BCs

(until publication of LED, PRINCE, etc.)
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Formalizing Block Cipher Security: Pseudorandomness

0/1

E

k

Real World

random key

0/1

P

Ideal World
unif. random
permutation

SPRP (a.k.a. CCA) advantage:

Advsprp
E (D) =

∣∣∣Pr [DEk = 1
]
− Pr

[
DP = 1

]∣∣∣
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Formalizing Pseudorandomness for the IEM Cipher
Real world

0/1

qc

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

qp

Ideal world

0/1

P0

qc

P1, . . . ,Pr

qp

• real world: IEM cipher with a random key k ←$ {0, 1}κ

• ideal world: random permutation P0 independent from P1, . . . ,Pr
• Rand. Perm. Model: D has oracle access to P1, . . . ,Pr in both worlds
• qc queries to the IEM/P0 and qp queries to each inner perm.
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Pseudorandomness of the IEM Cipher: Main Result
Theorem (Chen-Steinberger [CS14])
For independent round keys (k0, . . . , kr ) and independent inner
permutations P1, . . . ,Pr , the best distinguishing advantage against the
r -round IEM cipher satisfies

Advsprp
EM[n,r ](qc , qp) ≤ O

(qcqr
p

2rn

)

= O
(
qr+1

tot
2rn

)

• holds when the r + 1 round keys are only r -wise independent, e.g.

(k0, k0 ⊕ k1, k1 ⊕ k2, . . . , kr−1 ⊕ kr , kr )

• often shortened to “secure up to O(2
rn

r+1 ) queries” by letting
qtot = qc + rqp

• the result is tight (matched by exhaustive key-search, see later)
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Pseudorandomness of the IEM Cipher: Main Result

Plotting the bound in the plan (qc , qp):

r = 1

secure

insec.
r = 2
r = 3

r = +∞

log2(qc )

log2(qp)

0 n
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2n
3

n
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n
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Pseudorandomness of the IEM Cipher: History

[CS14] closed the following series of work:

• tight bound for r = 1: Even-Mansour [EM97]
(proof: game-based)

• tight bound for r = 2: Bogdanov et al. [BKL+12]
(proof: game-based, intricate!)

• tight bound for r = 3: Steinberger [Ste12]
(proof: Hellinger distance)

• non-tight bound O(2
rn

r+2 ) for any even r :
Lampe-Patarin-Seurin [LPS12]
(proof: coupling technique)

• tight bound for any r : Chen-Steinberger [CS14]
(proof: H-coefficients technique)
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A Cautionary Note on Attacks

Matching attack:

• there is a matching attack with qc , qp ' 2
rn

r+1 : exhaustive key-search!
• in other words: exhaustive key-search does not require to make the
2n possible queries to the Pi ’s!

• but this is still exhaustive key-search: time 2κ ≥ 2n!
• exceptions (for independent round keys):

• r = 1 round: Daemen’s attack [Dae91], time t ' 2 n
2

• r = 2 rounds: Dinur et al. attack [DDKS13], time t ' 2n−log n > 2 2n
3

• for r ≥ 3, best attack requires t ' 2(r+1)n
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Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Reducing the Key-Length and the Number of Permutations

Question:
Is it possible to prove a similar O(2

rn
r+1 ) bound when:

• the round keys (k0, . . . , kr ) are derived from an n-bit master key
• and/or when the same permutation P is used at each round

as is the case in many concrete designs (AES, etc.)?

x
n

P1 P2 Pr y

k0 k1 kr

k
n

γ0 γ1 γr

Positive answer for r = 2 rounds: O(2 2n
3 )-security bound [CLL+14]
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A Non-Trivial Key-Schedule is Necessary

x

k

PP yx ′ P y ′
k

Slide Attack for Identical Permutations and Trivial KS:
• find (x , y), (x ′, y ′) such that x ′ = P(x ⊕ k) (slid pair)
• can be detected by checking that x ⊕ P(y) = y ′ ⊕ P−1(x ′)
• requires ∼ O(2 n

2 ) queries to E and P by the birthday paradox
• works for any number of rounds
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Provably Secure Construction for 2 Rounds

Theorem (Chen et al. [CLL+14])
The IEM cipher below is secure up to Õ(2 2n

3 ) queries of the adversary.

x

k

P P

π

y

π can be any fixed (F2-linear) orthomorphism (i.e., π is a permutation
and k 7→ k ⊕ π(k) is a permutation), for instance

π :(kL, kR) 7→ (kR , kL ⊕ kR) (Feistel)
π :k 7→ c � k, for c 6= 0, 1 (field mult.)
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Outline

Introduction and History

Pseudorandomness of Key-Alternating Ciphers

Beyond Pseudorandomness: Related-Key Attacks

Beyond RKAs: Chosen-Key Attacks and Indifferentiability
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Related-Key Attacks

The Related-Key Attack Model [BK03]:

• stronger adversarial model: the adversary can specify Related-Key
Deriving (RKD) functions φ and receive Eφ(k)(x) and/or E−1φ(k)(y)

• the block cipher should behave as an ideal cipher (an independent
random permutation for each key)

• impossibility results for too “large” sets of RKDs
• positive results for limited sets of RKDs or using number-theoretic
constructions

• we will consider XOR-RKAs: the set of RKD functions is

{φ∆ : k 7→ k ⊕∆,∆ ∈ {0, 1}κ}

• NB: independent work by Farshim and Procter at FSE 2015 [FP15]
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• impossibility results for too “large” sets of RKDs
• positive results for limited sets of RKDs or using number-theoretic
constructions

• we will consider XOR-RKAs: the set of RKD functions is
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XOR-RKAs against the IEM Cipher: Formalization
Real world

0/1

(∆, x)

EMk⊕∆(x)

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

qp

Ideal world

0/1

IC

(∆, x)

ICk⊕∆(x)

P1, . . . ,Pr

qp

• real world: IEM cipher with a random key k ←$ {0, 1}κ

• ideal world: ideal cipher IC independent from P1, . . . ,Pr
• Rand. Perm. Model: D has oracle access to P1, . . . ,Pr in both worlds
• qc queries to the IEM/IC and qp queries to each inner perm.

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 25 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

XOR-RKAs against the IEM Cipher: Formalization
Real world

0/1

(∆, x)

EMk⊕∆(x)

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

qp

Ideal world

0/1

IC

(∆, x)

ICk⊕∆(x)

P1, . . . ,Pr

qp

• real world: IEM cipher with a random key k ←$ {0, 1}κ

• ideal world: ideal cipher IC independent from P1, . . . ,Pr
• Rand. Perm. Model: D has oracle access to P1, . . . ,Pr in both worlds
• qc queries to the IEM/IC and qp queries to each inner perm.

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 25 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

XOR-RKAs against the IEM Cipher: Formalization
Real world

0/1

(∆, x)

EMk⊕∆(x)

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

qp

Ideal world

0/1

IC

(∆, x)

ICk⊕∆(x)

P1, . . . ,Pr

qp

• real world: IEM cipher with a random key k ←$ {0, 1}κ

• ideal world: ideal cipher IC independent from P1, . . . ,Pr
• Rand. Perm. Model: D has oracle access to P1, . . . ,Pr in both worlds
• qc queries to the IEM/IC and qp queries to each inner perm.

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 25 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

First Observation: Independent Round Keys Fails

P1

x

x ′

k0 ⊕∆0

k0 ⊕∆′0

P2 Pr y

k1 kr

RK Distinguisher for independent round keys:

• query ((∆0, 0, . . . , 0), x) and ((∆′0, 0, . . . , 0), x ′) such that

x ⊕∆0 = x ′ ⊕∆′0

• check that the outputs are equal
• holds with proba. 1 for the IEM cipher
• holds with proba. 2−n for an ideal cipher
• ⇒ we will consider round keys derived from an n-bit master key
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A Simple Attack for One Round, Trivial Key-Schedule
P1

(∆1, x1)

u v

y1 = v ⊕ k ⊕∆1

k ⊕∆1

(∆2, x2)

x1 ⊕ x2 = ∆1 ⊕∆2

k ⊕∆2

y2 = v ⊕ k ⊕∆2

Check that y1 ⊕ y2 = ∆1 ⊕∆2 (∗)

• 2 queries to the RK oracle, 0 queries to P1
• (∗) holds with proba. 1 for the EM cipher
• (∗) holds with proba. 2−n for an ideal cipher
• works for any linear key-schedule
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An Attack for Two Rounds, Trivial Key-Schedule
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Check that x3 ⊕ x4 = ∆3 ⊕∆4 (∗)

• 4 queries to the RK oracle, 0 queries to P1,P2
• (∗) holds with proba. 1 for the 2-round IEM cipher
• (∗) holds with proba. 2−n for an ideal cipher
• works for any linear key-schedule
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Security for Three Rounds, Trivial Key-Schedule

x P1

k
P2

k
P3

k
y

k

Theorem (Cogliati-Seurin [CS15])
For the 3-round IEM cipher with the trivial key-schedule:

Advxor-rka
EM[n,3](qc , qp) ≤ 6qcqp

2n +
4q2c
2n .

Proof sketch:
• D can create forward collisions at P1 or backward collisions at P3

• but proba. to create a collision at P2 is . q2c/2n

• no collision at P2
⇒ ∼ single-key security of 1-round EM . qcqp/2n
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Security for One Round and a Nonlinear Key-Schedule

x

k
n

n
P1

γ0

y

γ1

Theorem (Cogliati-Seurin [CS15])
For the 1-round EM cipher with key-schedule γ = (γ0, γ1):

Advxor-rka
EM[n,1,γ](qc , qp) ≤ 2qcqp

2n +
(δ(γ0) + δ(γ1))q2c

2 · 2n ,

where δ(f ) = maxa,b∈{0,1}n,a 6=0 |{x ∈ {0, 1}n : f (x ⊕ a)⊕ f (x) = b}|.
(δ(f ) = 2 for an APN permutation.)
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Formalizing Chosen-Key Attacks

• informal goal: find tuples of key/pt/ct (ki , xi , yi ) with a property which
is hard to satisfy for an ideal cipher

• no formal definition for a single, completely instantiated block cipher E
• simply because, e.g., E0(0) has a specific, non-random value. . .
• OK this does not count
• but what counts as a chosen-key attack exactly?
• rigorous definition possible for a family of block ciphers based on some
underlying ideal primitive

• e.g., IEM cipher based on a tuple of random permutations!
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Formalizing Chosen-Key Attacks
Definition (Evasive relation)
An m-ary relation R is (q, ε)-evasive (w.r.t. an ideal cipher E ) if any
adversary A making at most q queries to E finds triples (k1, x1, y1), . . . ,
(km, xm, ym) (with Eki (xi ) = yi) satisfying R with probability at most ε.

Example

• consider E in Davies-Meyer mode f (k, x) := Ek(x)⊕ x
• finding a preimage of 0 for f is a unary

(
q,O( q

2n )
)
-evasive relation

for E [BRS02]
• finding a collision for f is a binary

(
q,O(q2

2n )
)
-evasive relation for

E [BRS02]
• for BC-based hashing, most hash function security notions can be
recast as evasive relations for the underlying BC
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Formalizing Chosen-Key Attacks

Definition (Correlation Intractability)
A block cipher construction CF based on some underlying primitive F is
said to be (q, ε)-correlation intractable w.r.t. an m-ary relation R if any
adversary A making at most q queries to F finds triples (k1, x1, y1), . . . ,
(km, xm, ym) (with CF

ki
(xi ) = yi) satisfying R with probability at most ε.

Definition (Resistance to Chosen-Key Attacks)
Informally, a block cipher construction CF is said resistant to chosen-key
attacks if for any (q, ε)-evasive relation R, CF is (q′, ε′)-correlation
intractable w.r.t. R with q′ ' q and ε′ ' ε.

Questions:
• How do we prove prove resistance to chosen-key attacks?
• How many rounds for the IEM cipher to be resistant to CKAs?
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A Chosen-Key Attack for Three Rounds [LS13]
P1 P2 P3

u1 v1

x1

u2 v2 u3 v3 y1

k1

x2

u′2 v ′2 u′3 v ′3 y2

k2 k3 k4

y3

y4

u′1 v ′1x3

x4

• tuples (k1, x1, y1), (k2, x2, y2), (k3, x3, y3), (k4, x4, y4) satisfy
k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0
x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0
y1 ⊕ y2 ⊕ y3 ⊕ y4 = 0 .

• this is a
(
q,O(q4

2n )
)
-evasive relation for an ideal cipher

• ⇒ the 3-round IEM cipher is not resistant to CKAs
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Proving CKA Resistance: Indifferentiability
Real world

0/1

(k , x)

EMk(x)

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

Ideal world

0/1

IC

(k , x)

ICk(x)

P1, . . . ,Pr

Simulator S

• real world: IEM cipher + random permutations P1, . . . ,Pr

• ideal world: ideal cipher IC + simulator S
• no hidden secret in the real world!
(but D can only make a limited number of queries)
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0/1
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Simulator S
qs

Definition (Indifferentiability [MRH04])
A block cipher construction is said (qd , qs , ε)-indifferentiable from an
ideal cipher if there exists a simulator S such that for any distinguisher D
making at most qd queries in total, S makes at most qs ideal cipher
queries and D distinguishes the two worlds with adv. at most ε
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Two Flavors of Indifferentiability
Real world
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Ideal world
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IC
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ICk(x)
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Simulator S
qs

• full indifferentiability: D can queries its oracle as it wishes
• sequential indifferentiability: two query phases

1. D first queries only Pi ’s/S
2. and then only EM/IC

• full indiff. ⇒ sequential indiff.
Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 38 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Two Flavors of Indifferentiability
Real world

0/1

(k , x)

EMk(x)

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

Ideal world

0/1

IC

(k , x)

ICk(x)

P1, . . . ,Pr

Simulator S
qs

• full indifferentiability: D can queries its oracle as it wishes
• sequential indifferentiability: two query phases

1. D first queries only Pi ’s/S
2. and then only EM/IC

• full indiff. ⇒ sequential indiff.
Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 38 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Two Flavors of Indifferentiability
Real world

0/1

(k , x)

EMk(x)

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

Ideal world

0/1

IC

(k , x)

ICk(x)

P1, . . . ,Pr

Simulator S
qs

• full indifferentiability: D can queries its oracle as it wishes
• sequential indifferentiability: two query phases

1. D first queries only Pi ’s/S
2. and then only EM/IC

• full indiff. ⇒ sequential indiff.
Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 38 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Two Flavors of Indifferentiability
Real world

0/1

(k , x)

EMk(x)

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

Ideal world

0/1

IC

(k , x)

ICk(x)

P1, . . . ,Pr

Simulator S
qs

• full indifferentiability: D can queries its oracle as it wishes
• sequential indifferentiability: two query phases

1. D first queries only Pi ’s/S
2. and then only EM/IC

• full indiff. ⇒ sequential indiff.
Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 38 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Two Flavors of Indifferentiability
Real world

0/1

(k , x)

EMk(x)

x

k

P1

γ0

P2

γ1

Pr y

γr

P1, . . . ,Pr

Ideal world

0/1

IC

(k , x)

ICk(x)

P1, . . . ,Pr

Simulator S
qs

• full indifferentiability: D can queries its oracle as it wishes
• sequential indifferentiability: two query phases

1. D first queries only Pi ’s/S
2. and then only EM/IC

• full indiff. ⇒ sequential indiff.
Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 38 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Composition Theorems
Theorem (Composition for full indiff. [MRH04])
Informally, if a block cipher construction CF is full-indifferentiable from
an ideal cipher, then any cryptosystem proven secure with an ideal cipher
remains provably secure when used with CF (for cryptosystems whose
security is defined by a single-stage game [RSS11]).

Theorem ([MPS12, CS15])
If a block cipher construction CF is (qd , qs , ε)-seq-indiff. from an ideal
cipher, and if a relation R is (qs , εic)-evasive for an ideal cipher, then CF

is (qd , εic + ε)-correlation intractable w.r.t. R.

success proba.

queries
εic

qs

IC
(qd , qs , ε)-seq-indiff.

εic + ε

qd

CF
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Indifferentiability Results for the IEM Cipher

Theorem (Andreeva et al. [ABD+13])
The 5-round IEM cipher with a key-schedule modeled as a random oracle
is fully indifferentiable from an ideal cipher.
NB: strong assumption on the key-schedule (often invertible in real BCs)

Theorem (Lampe-Seurin [LS13])
The 12-round IEM cipher with the trivial key-schedule is fully
indifferentiable from an ideal cipher.

Theorem (Cogliati-Seurin [CS15])
The 4-round IEM cipher with the trivial key-schedule is sequentially
indifferentiable from an ideal cipher with qs = O(q2d ) and ε = O(q4d/2n)
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CKA Resistance for the 4-Round IEM Cipher

By the composition theorem “seq-indiff. ⇒ correlation-intractability”:

Theorem
Let R be a (q2, εic)-evasive relation w.r.t. an ideal cipher. Then the
4-round IEM with the trivial key-schedule is

(
q, εic +O(q4

2n )
)
correlation

intractable w.r.t. R.

Example
Consider f = 4-round IEM cipher in Davies-Meyer mode. Then
• f is

(
q,O(q4

2n )
)
-preimage resistant

• f is
(
q,O(q4

2n )
)
-collision resistant

(in the Random Permutation Model)

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 41 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

CKA Resistance for the 4-Round IEM Cipher

By the composition theorem “seq-indiff. ⇒ correlation-intractability”:

Theorem
Let R be a (q2, εic)-evasive relation w.r.t. an ideal cipher. Then the
4-round IEM with the trivial key-schedule is

(
q, εic +O(q4

2n )
)
correlation

intractable w.r.t. R.

Example
Consider f = 4-round IEM cipher in Davies-Meyer mode. Then
• f is

(
q,O(q4

2n )
)
-preimage resistant

• f is
(
q,O(q4

2n )
)
-collision resistant

(in the Random Permutation Model)

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 41 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Conclusion
Morality:

• idealized models can be fruitful
• practical meaning of the results is debatable:

• the high-level structure of SPNs is sound (and may even yield
something close to an ideal cipher)

• says little about concrete block ciphers (inner permutations of, say,
AES are too simple)

Open problems:

• pseudorandomness for non-independent round keys, r ≥ 3
• full indifferentiability:

• best known attack is only on 3 rounds (for trivial KS)
• minimal number of rounds for full indifferentiability ? (4 ≤ r ≤ 12)
• ⇒ the 4-round IEM might already be fully indifferentiable from an IC

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 42 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Conclusion
Morality:

• idealized models can be fruitful
• practical meaning of the results is debatable:

• the high-level structure of SPNs is sound (and may even yield
something close to an ideal cipher)

• says little about concrete block ciphers (inner permutations of, say,
AES are too simple)

Open problems:

• pseudorandomness for non-independent round keys, r ≥ 3
• full indifferentiability:

• best known attack is only on 3 rounds (for trivial KS)
• minimal number of rounds for full indifferentiability ? (4 ≤ r ≤ 12)
• ⇒ the 4-round IEM might already be fully indifferentiable from an IC

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 42 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Conclusion
Morality:

• idealized models can be fruitful
• practical meaning of the results is debatable:

• the high-level structure of SPNs is sound (and may even yield
something close to an ideal cipher)

• says little about concrete block ciphers (inner permutations of, say,
AES are too simple)

Open problems:

• pseudorandomness for non-independent round keys, r ≥ 3
• full indifferentiability:

• best known attack is only on 3 rounds (for trivial KS)
• minimal number of rounds for full indifferentiability ? (4 ≤ r ≤ 12)
• ⇒ the 4-round IEM might already be fully indifferentiable from an IC

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 42 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Conclusion
Morality:

• idealized models can be fruitful
• practical meaning of the results is debatable:

• the high-level structure of SPNs is sound (and may even yield
something close to an ideal cipher)

• says little about concrete block ciphers (inner permutations of, say,
AES are too simple)

Open problems:

• pseudorandomness for non-independent round keys, r ≥ 3
• full indifferentiability:

• best known attack is only on 3 rounds (for trivial KS)
• minimal number of rounds for full indifferentiability ? (4 ≤ r ≤ 12)
• ⇒ the 4-round IEM might already be fully indifferentiable from an IC

Yannick Seurin KACs in the EM Model March 20, 2015 — CCA 42 / 49



Introduction and History Pseudorandomness RKAs CKAs & Indifferentiability Conclusion

Summary of Known Results

Security # of Key Security Simul.
Ref.

notion rounds schedule bound (qS/tS)

Single-key
r ≥ 1 independent 2

rn
r+1 — [CS14]

1 trivial 2 n
2 — [EM97, DKS12]

2 trivial 2 2n
3 — [CLL+14]

XOR RKA
3 trivial 2 n

2 — [CS15, FP15]
1 nonlinear 2 n

2 — [CS15]

CKA (Seq-ind.) 4 trivial 2 n
4 q2 / q2 [CS15]

Full indiff.
5 rand. oracle 2 n

10 q2 / q3 [ABD+13]
12 trivial 2 n

12 q4 / q6 [LS13]
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The End. . .

Thanks for your attention!

Comments or questions?
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