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Key-alternating ciphers
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An r -round key-alternating cipher

k ∈ {0, 1}n is the (master) key, x the plaintext, y the ciphertext
The Pi ’s are public permutations on {0, 1}n

The γi ’s are key derivation functions mapping k to n-bit “round keys”
prominent example: AES-128
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Proving the security of key-alternating ciphers
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Question
How can we “prove” security? (for this talk, security = pseudorandomness)

against a general adversary: too hard!
(unconditional complexity lower bound)
against specific attacks (differential, linear. . . ): use specific design of
P1, . . . ,Pr , count active S-boxes, etc.
against generic attacks: Random Permutation Model for P1, . . . ,Pr
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Analyzing KA ciphers in the Random Permutation Model
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the Pi ’s are viewed as public random permutation oracles to which the
adversary can only make black-box queries (both to Pi and P−1

i ).
trades complexity for randomness and allows for a completely
information-theoretic proof (' Random Oracle Model)
complexity measure of the adversary:

qe = number of queries to the cipher (plaintext/ciphertext pairs)
qp = number of queries to each internal permutation oracle
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Analyzing KA ciphers in the Random Permutation Model

This model was already considered 15 years ago by Even and Mansour
[EM97] for r = 1 round: they showed that the following cipher is secure up
to O(2 n

2 ) queries of the adversary to P and E :

x P
k0

y
k1

︸ ︷︷ ︸
E

Similar result when k0 = k1 [DKS12]

Wording: “(iterated) Even-Mansour cipher” = shorthand for “analyzing
the class of key-alternating ciphers in the Random Permutation Model”

Chen, Lampe, Lee, Seurin, Steinberger Minimizing the 2-Round EM Cipher CRYPTO 2014 6 / 29



Analyzing KA ciphers in the Random Permutation Model

This model was already considered 15 years ago by Even and Mansour
[EM97] for r = 1 round: they showed that the following cipher is secure up
to O(2 n

2 ) queries of the adversary to P and E :

x P
k

y
k

︸ ︷︷ ︸
E

Similar result when k0 = k1 [DKS12]

Wording: “(iterated) Even-Mansour cipher” = shorthand for “analyzing
the class of key-alternating ciphers in the Random Permutation Model”

Chen, Lampe, Lee, Seurin, Steinberger Minimizing the 2-Round EM Cipher CRYPTO 2014 6 / 29



Analyzing KA ciphers in the Random Permutation Model

This model was already considered 15 years ago by Even and Mansour
[EM97] for r = 1 round: they showed that the following cipher is secure up
to O(2 n

2 ) queries of the adversary to P and E :

x P
k

y
k

︸ ︷︷ ︸
E

Similar result when k0 = k1 [DKS12]

Wording: “(iterated) Even-Mansour cipher” = shorthand for “analyzing
the class of key-alternating ciphers in the Random Permutation Model”

Chen, Lampe, Lee, Seurin, Steinberger Minimizing the 2-Round EM Cipher CRYPTO 2014 6 / 29



Outline

1 Context: Security Proofs for Key-Alternating Ciphers

2 Overview of our Results

3 Sketch of the Security Proof

Chen, Lampe, Lee, Seurin, Steinberger Minimizing the 2-Round EM Cipher CRYPTO 2014 7 / 29



State of the art

x P1

k0

P2

k1

Pr y
kr

Closing a series of recent results [BKL+12, Ste12, LPS12], Chen and
Steinberger [CS14] showed that assuming

1 independent round keys (k0, k1, . . . , kr ),
2 independent inner permutations P1, . . . ,Pr ,

KA ciphers are secure against generic attacks as long as

qe and qp � O(2
rn

r+1 ).

This result is tight (in terms of query complexity).
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Our problem

Main question
Is it possible to prove a similar O(2

rn
r+1 ) bound when:

the round keys (k0, . . . , kr ) are derived from an n-bit master key
and/or when the same permutation P is used at each round

as is the case in many concrete designs (AES-128, etc.)?

x
n

P1 P2 Pr y

k0 k1 kr

k
n

γ0 γ1 γr

We give a positive answer for r = 2 rounds: O(2 2n
3 )-security bound.
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Our results (1/2): two independent permutations

First, we deal with the (simpler) case where the two inner permutations
are independent. Then the trivial key-schedule is sufficient.

Theorem
The 2-round EM cipher with independent random permutations and
identical round keys is secure up to Õ(2 2n

3 ) queries of the adversary.

x P1

k
P2

k
y

k
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Our results (2/2): one single permutation

Theorem
The 2-round EM cipher below is secure up to Õ(2 2n

3 ) queries of the
adversary.

x

k

P P

π

y

π can be any fixed (F2-linear) orthomorphism (i.e., π is a permutation and
k 7→ k ⊕ π(k) is a permutation), for instance

π :(kL, kR) 7→ (kR , kL ⊕ kR) (Feistel)
π :k 7→ c � k, for c 6= 0, 1 (field mult.)
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Our results (2/2): one single permutation

Theorem (more general)

The 2-round EM cipher below is secure up to Õ(2 2n
3 ) queries when

(i) γ0, γ1, γ2 are F2-linear permutations;
(ii) γ0 ⊕ γ1 and γ1 ⊕ γ2 are permutations;
(iii) γ0 ⊕ γ1 ⊕ γ2 is a permutation.

x
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k0

P

γ1

k1

y

γ2

k2

Conjecture: F2-linearity and (iii) are not needed.
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Minimality of the construction

x

k

PP

π

y
x ′

P y ′
k

This construction is “minimal” to achieve O(2 2n
3 ) security.

Removing any component causes security to drop back to O(2 n
2 ):

removing one of the P’s: 1-round Even-Mansour, O(2 n
2 )-secure

removing π: slide attack with O(2 n
2 ) complexity:

find (x , y), (x ′, y ′) such that x ′ = P(x ⊕ k) (slid pair)
can be detected by checking that x ⊕ P(y) = y ′ ⊕ P−1(x ′)
works for any number of rounds for id. round keys and id. permutations
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Formalizing indistinguishability (in the RP Model)
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Ideal world

real world: cipher with a random key k ←$ {0, 1}n

ideal world: E is a random permutation independent from P
Random Permutation Model: D has oracle access to P in both worlds
for this talk, qe = qp = q

Chen, Lampe, Lee, Seurin, Steinberger Minimizing the 2-Round EM Cipher CRYPTO 2014 15 / 29



Formalizing indistinguishability (in the RP Model)

D

0/1

qe

P

qp

Real world

x

k

P P

π

y

D

0/1

E

qe

P

qp

Ideal world

real world: cipher with a random key k ←$ {0, 1}n

ideal world: E is a random permutation independent from P
Random Permutation Model: D has oracle access to P in both worlds
for this talk, qe = qp = q

Chen, Lampe, Lee, Seurin, Steinberger Minimizing the 2-Round EM Cipher CRYPTO 2014 15 / 29



Formalizing indistinguishability (in the RP Model)

D

0/1

qe

P

qp

Real world

x

k

P P

π

y

D

0/1

E

qe

P

qp

Ideal world

real world: cipher with a random key k ←$ {0, 1}n

ideal world: E is a random permutation independent from P
Random Permutation Model: D has oracle access to P in both worlds
for this talk, qe = qp = q

Chen, Lampe, Lee, Seurin, Steinberger Minimizing the 2-Round EM Cipher CRYPTO 2014 15 / 29



Query transcript

P P

X U V U V Y

E

The distinguisher can query:
oracle E forward: E (x) = y , and backward: E−1(y) = x
oracle P forward: P(u) = v , and backward: P−1(v) = u

This results in a query transcript τ = (QE ,QP):

QE = {(x1, y1), . . . , (xq, yq)}
QP = {(u1, v1), . . . , (uq, vq)}.
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H-coefficient framework
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Adv(D) ≤ ‖Treal − Tideal‖ (statistical distance)

Treal/ideal = distribution of transcript (QE ,QP)

in the real/ideal world
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Lemma
Partition the set of transcripts into “good” ones Tgood and “bad” ones
Tbad. Then

∀τ ∈ Tgood,
Pr[Treal=τ ]
Pr[Tideal=τ ]

≥ 1− ε1

Pr[Tideal ∈ Tbad] ≤ ε2

⇒ Adv(D) ≤ ε1 + ε2
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Bad keys and bad transcripts (simplified)

P P
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X U V U V Y

E

A key k ′ is bad if D can check its “compatibility” with the transcript:
1 ∃(x , y) ∈ QE , u ∈ U, v ∈ V : k ′ = x ⊕ u = y ⊕ v
2 ∃(u, v) ∈ QP , x ∈ X , u′ ∈ U: k ′ = x ⊕ u and π(k ′) = v ⊕ u′
3 ∃(u, v) ∈ QP , y ∈ Y , v ′ ∈ V : k ′ = v ⊕ y and π(k ′) = v ′ ⊕ u

A transcript (QE ,QP) is bad if it has too many bad keys.
We must show that with high probability,

# bad keys� 2n.
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Upper bounding the number of bad keys

P P
◦ ◦ ◦ ◦◦ ◦◦ ◦ ◦ ◦◦ ◦◦ ◦ ◦ ◦◦ ◦◦ ◦ ◦ ◦◦ ◦◦ ◦ ◦ ◦◦ ◦

X U V U V Y

E

• •
• •k ′ • • k ′

Focus on case 1:

∃(x , y) ∈ QE , u ∈ U, v ∈ V : k ′ = x ⊕ u = y ⊕ v

Then

# bad keys ≤ #{((x , y), u, v) ∈ QE × U × V : x ⊕ y︸ ︷︷ ︸
' random

= u ⊕ v}
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The sum-capture problem

For A = {a1, . . . , aq} ⊆ {0, 1}n, let

µ(A) = max
U,V⊆{0,1}n

|U|=|V |=q

|{(a, u, v) ∈ A× U × V : a = u ⊕ v}|

If A is “structured”, e.g. a vector space, then µ(A) = q2

Sum-capture problem: find upper bounds on µ(A) for a random set A

Theorem ([Bab89, Ste13])

For q ≤ 2 2n
3 , then with overwhelming probability for a random set A,

µ(A) . q
3
2 .

(Hence µ(A)� 2n when q � 2 2n
3 .)
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A new sum-capture theorem

In our case, we need to adapt the theorem to the case where

A = {x1 ⊕ y1, . . . , xq ⊕ yq} ' random

Theorem
Let D be an adversary interacting with a random permutation E of
{0, 1}n, resulting in a query transcript QE = {(x1, y1), . . . , (xq, yq)}. Let

µ(QE ) = max
U,V⊆{0,1}n

|U|=|V |=q

|{((x , y), u, v) ∈ QE × U × V : x ⊕ y = u ⊕ v}|

If q ≤ 2 2n
3 , then with overwhelming probability,

# bad keys ≤ µ(QE ) ≤ 3(
√
n + 1)q

3
2 .

Proof: Fourier analysis.
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Good transcripts

For a “good” transcript τ = (QE ,QP) with the expected number of bad
keys, we are reduced to the following permutation counting problem.

Permutation counting problem (simplified)
Let X = {x1, . . . , xq} and Y = {y1, . . . , yq} with X ∩ Y “small”. Compare

preal = Pr[P ←$ Pn : P ◦ P(xi) = yi for i = 1, . . . , q]

and pideal =
1

2n(2n − 1) · · · (2n − q + 1) (Pr[E (xi) = yi ])

Lemma
Assume |X ∩Y | ≤ q/2n/3. Then preal ≥ (1− ε1) pideal with ε1 = O

(
q3

22n

)
.

Proof: intricate counting /
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Random square permutation vs. random permutation

D

0/1

P P

D

0/1

E

Random Square Permutation Problem
How many queries needs D to distinguish a random square permutation
P ◦ P from a perfectly random permutation E?

Conjecture: indistinguishable up to ∼ 2n queries

Best known attack: find a fixed point
(P ◦ P has twice more fixed points than a random permutation)
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Conclusion

minimal Even-Mansour cipher secure against generic attacks up to
O(2 2n

3 ) queries:

x

k

P P

π

y

first “beyond birthday-bound” security result for AES-like ciphers that
does not require the “independent round keys” assumption

open problems:
remove technical restrictions (mainly F2-linear key-schedule)
extend the result to r ≥ 3 rounds!
(generalization of the sum-capture problem?)
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The end. . .

Thanks for your attention!

Comments or questions?
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