Minimizing the Two-Round Even-Mansour Cipher

Shan Chen¹ Rodolphe Lampe² Jooyoung Lee³ <u>Yannick Seurin</u>⁴ John Steinberger¹

¹Tsinghua University, China

²University of Versailles, France

³Sejong University, Korea

⁴ANSSI, France

August 18, 2014 - CRYPTO 2014

1 Context: Security Proofs for Key-Alternating Ciphers

2 Overview of our Results

3 Sketch of the Security Proof

Key-alternating ciphers

An r-round key-alternating cipher

- $k \in \{0,1\}^n$ is the (master) key, x the plaintext, y the ciphertext
- The P_i 's are public permutations on $\{0,1\}^n$
- The γ_i 's are key derivation functions mapping k to n-bit "round keys"
- prominent example: AES-128

Key-alternating ciphers

An r-round key-alternating cipher

- $k \in \{0,1\}^n$ is the (master) key, x the plaintext, y the ciphertext
- The P_i 's are public permutations on $\{0,1\}^n$
- The γ_i 's are key derivation functions mapping k to n-bit "round keys"
- prominent example: AES-128

Question

How can we "prove" security? (for this talk, security = pseudorandomness)

- against a general adversary: too hard
 - (unconditional complexity lower bound)
- against specific attacks (differential, linear...): use specific design of P₁,..., P_r, count active S-boxes, etc.
- against generic attacks: Random Permutation Model for P₁,..., F

< □ > < □ > < □</p>

Question

How can we "prove" security? (for this talk, security = pseudorandomness)

- against a general adversary: too hard! (unconditional complexity lower bound)
- against specific attacks (differential, linear...): use specific design of P₁,..., P_r, count active S-boxes, etc.
- against generic attacks: Random Permutation Model for P_1, \ldots, P_r

Question

How can we "prove" security? (for this talk, security = pseudorandomness)

- against a general adversary: too hard! (unconditional complexity lower bound)
- against specific attacks (differential, linear...): use specific design of P₁,..., P_r, count active S-boxes, etc.

• against generic attacks: Random Permutation Model for P_1, \ldots, P_r

Question

How can we "prove" security? (for this talk, security = pseudorandomness)

- against a general adversary: too hard! (unconditional complexity lower bound)
- against specific attacks (differential, linear...): use specific design of P₁,..., P_r, count active S-boxes, etc.
- against generic attacks: Random Permutation Model for P_1, \ldots, P_r

Analyzing KA ciphers in the Random Permutation Model

- the P_i 's are viewed as public random permutation oracles to which the adversary can only make black-box queries (both to P_i and P_i^{-1}).
- trades complexity for randomness and allows for a completely information-theoretic proof (\simeq Random Oracle Model)
- complexity measure of the adversary:
 - q_e = number of queries to the cipher (plaintext/ciphertext pairs)
 - q_p = number of queries to each internal permutation oracle

Analyzing KA ciphers in the Random Permutation Model

- the P_i 's are viewed as public random permutation oracles to which the adversary can only make black-box queries (both to P_i and P_i^{-1}).
- trades complexity for randomness and allows for a completely information-theoretic proof (\simeq Random Oracle Model)
- complexity measure of the adversary:
 - q_e = number of queries to the cipher (plaintext/ciphertext pairs)
 - q_p = number of queries to each internal permutation oracle

Analyzing KA ciphers in the Random Permutation Model

- the P_i 's are viewed as public random permutation oracles to which the adversary can only make black-box queries (both to P_i and P_i^{-1}).
- trades complexity for randomness and allows for a completely information-theoretic proof (\simeq Random Oracle Model)
- complexity measure of the adversary:
 - q_e = number of queries to the cipher (plaintext/ciphertext pairs)
 - q_p = number of queries to each internal permutation oracle

This model was already considered 15 years ago by Even and Mansour [EM97] for r = 1 round: they showed that the following cipher is secure up to $O(2^{\frac{n}{2}})$ queries of the adversary to P and E:

Similar result when $k_0 = k_1$ [DKS12]

Wording: "(<mark>iterated) Even-Mansour cipher</mark>" = shorthand for "analyzing the class of key-alternating ciphers in the Random Permutation Model"

This model was already considered 15 years ago by Even and Mansour [EM97] for r = 1 round: they showed that the following cipher is secure up to $O(2^{\frac{n}{2}})$ queries of the adversary to P and E:

Similar result when $k_0 = k_1$ [DKS12]

Wording: "(iterated) Even-Mansour cipher" = shorthand for "analyzing the class of key-alternating ciphers in the Random Permutation Model"

This model was already considered 15 years ago by Even and Mansour [EM97] for r = 1 round: they showed that the following cipher is secure up to $O(2^{\frac{n}{2}})$ queries of the adversary to P and E:

Similar result when $k_0 = k_1$ [DKS12]

Wording: "(iterated) Even-Mansour cipher" = shorthand for "analyzing the class of key-alternating ciphers in the Random Permutation Model"

Context: Security Proofs for Key-Alternating Ciphers

2 Overview of our Results

3 Sketch of the Security Proof

Closing a series of recent results [BKL⁺12, Ste12, LPS12], Chen and Steinberger [CS14] showed that assuming

- independent round keys (k_0, k_1, \ldots, k_r) ,
- **2** independent inner permutations P_1, \ldots, P_r ,

KA ciphers are secure against generic attacks as long as

$$q_e$$
 and $q_p \ll \mathcal{O}(2^{\frac{m}{r+1}})$.

This result is tight (in terms of query complexity).

Closing a series of recent results [BKL⁺12, Ste12, LPS12], Chen and Steinberger [CS14] showed that assuming

- independent round keys (k_0, k_1, \ldots, k_r) ,
- **2** independent inner permutations P_1, \ldots, P_r ,

KA ciphers are secure against generic attacks as long as

$$q_e$$
 and $q_p \ll \mathcal{O}(2^{\frac{m}{r+1}})$.

This result is tight (in terms of query complexity).

Main question

Is it possible to prove a similar $\mathcal{O}(2^{\frac{rn}{r+1}})$ bound when:

the round keys (k₀,..., k_r) are derived from an *n*-bit master key
and/or when the same permutation *P* is used at each round as is the case in many concrete designs (AES-128, etc.)?

Main question

Is it possible to prove a similar $\mathcal{O}(2^{\frac{rn}{r+1}})$ bound when:

- the round keys (k_0, \ldots, k_r) are derived from an *n*-bit master key
- and/or when the same permutation *P* is used at each round

s is the case in many concrete designs (AES-128, etc.)?

Main question

Is it possible to prove a similar $\mathcal{O}(2^{\frac{m}{r+1}})$ bound when:

- the round keys (k_0, \ldots, k_r) are derived from an *n*-bit master key
- and/or when the same permutation P is used at each round

as is the case in many concrete designs (AES-128, etc.)?

Main question

Is it possible to prove a similar $\mathcal{O}(2^{\frac{m}{r+1}})$ bound when:

- the round keys (k_0, \ldots, k_r) are derived from an *n*-bit master key
- and/or when the same permutation P is used at each round

as is the case in many concrete designs (AES-128, etc.)?

Main question

Is it possible to prove a similar $\mathcal{O}(2^{\frac{m}{r+1}})$ bound when:

- the round keys (k_0, \ldots, k_r) are derived from an *n*-bit master key
- and/or when the same permutation P is used at each round

as is the case in many concrete designs (AES-128, etc.)?

First, we deal with the (simpler) case where the two inner permutations are independent. Then the trivial key-schedule is sufficient.

Theorem

The 2-round EM cipher with independent random permutations and identical round keys is secure up to $\tilde{\mathcal{O}}(2^{\frac{2n}{3}})$ queries of the adversary.

Theorem

The 2-round EM cipher below is secure up to $\widetilde{\mathcal{O}}(2^{\frac{2n}{3}})$ queries of the adversary.

 π can be any fixed (\mathbb{F}_2 -linear) orthomorphism (i.e., π is a permutation and $k \mapsto k \oplus \pi(k)$ is a permutation), for instance

$$\pi : (k_L, k_R) \mapsto (k_R, k_L \oplus k_R) \quad \text{(Feistel)}$$

$$\pi : k \mapsto c \odot k, \quad \text{for } c \neq 0,1 \quad \text{(field mult.)}$$

Theorem (more general)

The 2-round EM cipher below is secure up to $\widetilde{\mathcal{O}}(2^{\frac{2n}{3}})$ queries when

(i) $\gamma_0, \gamma_1, \gamma_2$ are \mathbb{F}_2 -linear permutations;

(ii) $\gamma_0 \oplus \gamma_1$ and $\gamma_1 \oplus \gamma_2$ are permutations;

(iii) $\gamma_0 \oplus \gamma_1 \oplus \gamma_2$ is a permutation.

Conjecture: \mathbb{F}_2 -linearity and (*iii*) are not needed.

Theorem (more general)

The 2-round EM cipher below is secure up to $\widetilde{\mathcal{O}}(2^{\frac{2n}{3}})$ queries when

(i) $\gamma_0, \gamma_1, \gamma_2$ are \mathbb{F}_2 -linear permutations;

(ii) $\gamma_0 \oplus \gamma_1$ and $\gamma_1 \oplus \gamma_2$ are permutations;

OK for
$$(k, \pi(k), k)$$

(iii) $\gamma_0 \oplus \gamma_1 \oplus \gamma_2$ is a permutation.

Conjecture: \mathbb{F}_2 -linearity and (*iii*) are not needed.

CRYPTO 2014 12 / 29

Theorem (more general)

The 2-round EM cipher below is secure up to $\widetilde{\mathcal{O}}(2^{\frac{2n}{3}})$ queries when

(i) $\gamma_0, \gamma_1, \gamma_2$ are \mathbb{F}_2 -linear permutations;

(ii) $\gamma_0 \oplus \gamma_1$ and $\gamma_1 \oplus \gamma_2$ are permutations;

OK for
$$(k, \pi(k), k)$$

(iii) $\gamma_0 \oplus \gamma_1 \oplus \gamma_2$ is a permutation.

Conjecture: \mathbb{F}_2 -linearity and (*iii*) are not needed.

Minimality of the construction

This construction is "minimal" to achieve $\mathcal{O}(2^{\frac{2n}{3}})$ security. Removing any component causes security to drop back to $\mathcal{O}(2^{\frac{n}{2}})$:

• removing one of the *P*'s: 1-round Even-Mansour, $O(2^2)$ -secure • removing π : slide attack with $O(2^{\frac{n}{2}})$ complexity:

Chen, Lampe, Lee, <u>Seurin</u>, Steinberger Minimizing the 2-Round EM Cipher CRYPTO 2014

13 / 29

Minimality of the construction

- removing one of the P's: 1-round Even-Mansour, $\mathcal{O}(2^{\frac{n}{2}})$ -secure
- removing π : slide attack with $\mathcal{O}(2^{\frac{n}{2}})$ complexity:
 - find (x, y), (x', y') such that $x' = P(x \oplus k)$ (slid pair)
 - can be detected by checking that $x\oplus P(y)=y'\oplus P^{-1}(x')$
 - works for any number of rounds for id. round keys and id. permutations

- removing one of the P's: 1-round Even-Mansour, $\mathcal{O}(2^{\frac{n}{2}})$ -secure
- removing π : slide attack with $\mathcal{O}(2^{\frac{n}{2}})$ complexity:
 - find (x, y), (x', y') such that $x' = P(x \oplus k)$ (slid pair)
 - can be detected by checking that $x \oplus P(y) = y' \oplus P^{-1}(x')$
 - works for any number of rounds for id. round keys and id. permutations

- removing one of the P's: 1-round Even-Mansour, $\mathcal{O}(2^{\frac{n}{2}})$ -secure
- removing π : slide attack with $\mathcal{O}(2^{\frac{n}{2}})$ complexity:
 - find (x, y), (x', y') such that $x' = P(x \oplus k)$ (slid pair)
 - can be detected by checking that $x \oplus P(y) = y' \oplus P^{-1}(x')$
 - works for any number of rounds for id. round keys and id. permutations

Minimality of the construction

- removing one of the P's: 1-round Even-Mansour, $\mathcal{O}(2^{\frac{n}{2}})$ -secure
- removing π : slide attack with $\mathcal{O}(2^{\frac{n}{2}})$ complexity:
 - find (x, y), (x', y') such that $x' = P(x \oplus k)$ (slid pair)
 - can be detected by checking that $x \oplus P(y) = y' \oplus P^{-1}(x')$
 - works for any number of rounds for id. round keys and id. permutations

Context: Security Proofs for Key-Alternating Ciphers

2 Overview of our Results

3 Sketch of the Security Proof

Formalizing indistinguishability (in the RP Model)

• real world: cipher with a random key $k \leftarrow_{\$} \{0,1\}^n$

- ideal world: E is a random permutation independent from P
- Random Permutation Model: \mathcal{D} has oracle access to P in both worlds
- for this talk, $q_e = q_p = q$

Formalizing indistinguishability (in the RP Model)

- real world: cipher with a random key $k \leftarrow_{\$} \{0,1\}^n$
- ideal world: E is a random permutation independent from P
- Random Permutation Model: $\mathcal D$ has oracle access to P in both worlds
- for this talk, $q_e = q_p = q$

Formalizing indistinguishability (in the RP Model)

- real world: cipher with a random key $k \leftarrow_{\$} \{0,1\}^n$
- ideal world: E is a random permutation independent from P
- Random Permutation Model: $\mathcal D$ has oracle access to P in both worlds
- for this talk, $q_e = q_p = q$

- oracle E forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{(x_1, y_1), \dots, (x_q, y_q)\}\$$
$$Q_P = \{(u_1, v_1), \dots, (u_q, v_q)\}.$$

• oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$

$$Q_E = \{(x_1, y_1), \dots, (x_q, y_q)\}\$$
$$Q_P = \{(u_1, v_1), \dots, (u_q, v_q)\}.$$

• oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$

$$Q_E = \{(x_1, y_1), \dots, (x_q, y_q)\}\$$
$$Q_P = \{(u_1, v_1), \dots, (u_q, v_q)\}.$$

• oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$

$$Q_E = \{(x_1, y_1), \dots, (x_q, y_q)\}\$$
$$Q_P = \{(u_1, v_1), \dots, (u_q, v_q)\}.$$

• oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$

$$Q_E = \{(x_1, y_1), \dots, (x_q, y_q)\}\$$
$$Q_P = \{(u_1, v_1), \dots, (u_q, v_q)\}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{(x_1, y_1), \dots, (x_q, y_q)\}\$$
$$Q_P = \{(u_1, v_1), \dots, (u_q, v_q)\}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{(x_1, y_1), \dots, (x_q, y_q)\}\$$
$$Q_P = \{(u_1, v_1), \dots, (u_q, v_q)\}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{ (x_1, y_1), \dots, (x_q, y_q) \}$$
$$Q_P = \{ (u_1, v_1), \dots, (u_q, v_q) \}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{ (x_1, y_1), \dots, (x_q, y_q) \}$$
$$Q_P = \{ (u_1, v_1), \dots, (u_q, v_q) \}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{ (x_1, y_1), \dots, (x_q, y_q) \}$$
$$Q_P = \{ (u_1, v_1), \dots, (u_q, v_q) \}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{ (x_1, y_1), \dots, (x_q, y_q) \}$$
$$Q_P = \{ (u_1, v_1), \dots, (u_q, v_q) \}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{ (x_1, y_1), \dots, (x_q, y_q) \}$$
$$Q_P = \{ (u_1, v_1), \dots, (u_q, v_q) \}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{ (x_1, y_1), \dots, (x_q, y_q) \}$$
$$Q_P = \{ (u_1, v_1), \dots, (u_q, v_q) \}.$$

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{ (x_1, y_1), \dots, (x_q, y_q) \}$$
$$Q_P = \{ (u_1, v_1), \dots, (u_q, v_q) \}.$$

Query transcript

The distinguisher can query:

- oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$
- oracle P forward: P(u) = v, and backward: $P^{-1}(v) = u$

$$Q_E = \{ (x_1, y_1), \dots, (x_q, y_q) \}$$
$$Q_P = \{ (u_1, v_1), \dots, (u_q, v_q) \}.$$

• oracle *E* forward: E(x) = y, and backward: $E^{-1}(y) = x$

$$Q_E = \{(x_1, y_1), \dots, (x_q, y_q)\} Q_P = \{(u_1, v_1), \dots, (u_q, v_q)\}.$$

H-coefficient framework

 $\mathsf{Adv}(\mathcal{D}) \leq \|\mathcal{T}_{\mathrm{real}} - \mathcal{T}_{\mathrm{ideal}}\|$ (statistical distance)

 $\mathcal{T}_{\mathrm{real/ideal}} =$ distribution of transcript $(\mathcal{Q}_E, \mathcal{Q}_P)$ in the real/ideal world

H-coefficient framework

Lemma

Partition the set of transcripts into "good" ones \mathcal{T}_{good} and "bad" ones $\mathcal{T}_{bad}.$ Then

$$\begin{aligned} \forall \tau \in \mathcal{T}_{\text{good}}, \frac{\Pr[\mathcal{T}_{\text{real}} = \tau]}{\Pr[\mathcal{T}_{\text{ideal}} = \tau]} \geq 1 - \varepsilon_1 \\ \Pr[\mathcal{T}_{\text{ideal}} \in \mathcal{T}_{\text{bad}}] \leq \varepsilon_2 \end{aligned} \right\} \Rightarrow \mathsf{Adv}(\mathcal{D}) \leq \varepsilon_1 + \varepsilon_2 \end{aligned}$$

Chen, Lampe, Lee, Seurin, Steinberger

Minimizing the 2-Round EM Cipher

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript:

 $\exists (x,y) \in \mathcal{Q}_E, \ u \in U, \ v \in V: \ k' = x \oplus u = y \oplus v$

- ② ∃ $(u, v) \in Q_P$, $x \in X$, $u' \in U$: $k' = x \oplus u$ and $\pi(k') = v \oplus u'$
- ◎ $\exists (u, v) \in Q_P$, $y \in Y$, $v' \in V$: $k' = v \oplus y$ and $\pi(k') = v' \oplus u$

A transcript (Q_E, Q_P) is **bad** if it has too many bad keys. We must show that with high probability,

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: **1** $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$ **1** $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$

③ $\exists (u, v) \in Q_P, y \in Y, v' \in V: k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$

A transcript (Q_E, Q_P) is **bad** if it has too many bad keys. We must show that with high probability,

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: **1** $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$ **1** $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$

A transcript (Q_E, Q_P) is **bad** if it has too many bad keys. We must show that with high probability,

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: **1** $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$ **1** $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$

③ ∃ $(u, v) \in Q_P$, $y \in Y$, $v' \in V$: $k' = v \oplus y$ and $\pi(k') = v' \oplus u$

A transcript (Q_E, Q_P) is **bad** if it has too many bad keys. We must show that with high probability,

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: **1** $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$ **1** $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$

③ ∃ $(u, v) \in Q_P$, $y \in Y$, $v' \in V$: $k' = v \oplus y$ and $\pi(k') = v' \oplus u$

A transcript (Q_E, Q_P) is **bad** if it has too many bad keys. We must show that with high probability,

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: (1) $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$ (2) $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$ (3) $\exists (u, v) \in \mathcal{Q}_P, y \in Y, v' \in V: k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$ A transcript $(\mathcal{Q}_E, \mathcal{Q}_P)$ is bad if it has too many bad keys. We must show that with high probability.

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: (a) $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$ (c) $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$ (c) $\exists (u, v) \in \mathcal{Q}_P, y \in Y, v' \in V: k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$ A transcript $(\mathcal{Q}_E, \mathcal{Q}_P)$ is bad if it has too many bad keys. We must show that with high probability.

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: **a** $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V : k' = x \oplus u = y \oplus v$ **a** $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U : k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$ **a** $\exists (u, v) \in \mathcal{Q}_P, y \in Y, v' \in V : k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$ A transcript $(\mathcal{Q}_E, \mathcal{Q}_P)$ is bad if it has too many bad keys. We must show that with high probability

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: (a) $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$ (c) $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$ (c) $\exists (u, v) \in \mathcal{Q}_P, y \in Y, v' \in V: k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$ A transcript $(\mathcal{Q}_E, \mathcal{Q}_P)$ is bad if it has too many bad keys. We must show that with high probability.

bad keys $\ll 2^n$.

CRYPTO 2014 19 / 29

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: $\exists (x, y) \in \mathcal{Q}_F, u \in U, v \in V: k' = x \oplus u = y \oplus v$ ② $\exists (u, v) \in Q_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$ **3** $\exists (u, v) \in \mathcal{Q}_P, v \in Y, v' \in V: k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: $\exists (x, y) \in \mathcal{Q}_F, u \in U, v \in V: k' = x \oplus u = y \oplus v$ ② $\exists (u, v) \in Q_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$ **3** $\exists (u, v) \in \mathcal{Q}_P, v \in Y, v' \in V: k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: (a) $\exists (x, y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$ (c) $\exists (u, v) \in \mathcal{Q}_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$ (c) $\exists (u, v) \in \mathcal{Q}_P, y \in Y, v' \in V: k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$ A transcript $(\mathcal{Q}_F, \mathcal{Q}_P)$ is bad if it has too many bad keys

We must show that with high probability,

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript: $\exists (x, y) \in \mathcal{Q}_F, u \in U, v \in V: k' = x \oplus u = y \oplus v$ ② $\exists (u, v) \in Q_P, x \in X, u' \in U: k' = x \oplus u \text{ and } \pi(k') = v \oplus u'$ **3** $\exists (u, v) \in \mathcal{Q}_P, v \in Y, v' \in V: k' = v \oplus y \text{ and } \pi(k') = v' \oplus u$

A key k' is bad if \mathcal{D} can check its "compatibility" with the transcript:

∃(x, y) ∈ Q_E, u ∈ U, v ∈ V: k' = x ⊕ u = y ⊕ v
∃(u, v) ∈ Q_P, x ∈ X, u' ∈ U: k' = x ⊕ u and π(k') = v ⊕ u'
∃(u, v) ∈ Q_P, y ∈ Y, v' ∈ V: k' = v ⊕ y and π(k') = v' ⊕ u

A transcript (Q_E, Q_P) is **bad** if it has too many bad keys. We must show that with high probability,

Upper bounding the number of bad keys

Focus on case 1:

$$\exists (x,y) \in \mathcal{Q}_E, \ u \in U, \ v \in V: \ k' = x \oplus u = y \oplus v$$

Then

bad keys
$$\leq \#\{((x, y), u, v) \in \mathcal{Q}_E \times U \times V : \underbrace{x \oplus y}_{=} = u \oplus v\}$$

\simeq random

20 / 29

Upper bounding the number of bad keys

Focus on case 1:

$$\exists (x,y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$$

Then

bad keys
$$\leq \#\{((x, y), u, v) \in Q_E \times U \times V : \underbrace{x \oplus y}_{\simeq \text{ random}} = u \oplus v\}$$

20 / 29

Upper bounding the number of bad keys

Focus on case 1:

$$\exists (x,y) \in \mathcal{Q}_E, u \in U, v \in V: k' = x \oplus u = y \oplus v$$

Then

$$\# \text{ bad keys} \leq \#\{((x, y), u, v) \in \mathcal{Q}_E \times U \times V : \underbrace{x \oplus y}_{\simeq \text{ random}} = u \oplus v\}$$

20 / 29

For
$$A = \{a_1, \dots, a_q\} \subseteq \{0, 1\}^n$$
, let

$$\mu(A) = \max_{\substack{U, V \subseteq \{0,1\}^n \\ |U| = |V| = q}} |\{(a, u, v) \in A \times U \times V : a = u \oplus v\}|$$

If A is "structured", e.g. a vector space, then $\mu(A) = q^2$

Sum-capture problem: find upper bounds on $\mu(A)$ for a random set A

Theorem ([Bab89, Ste13])

For $q \leq 2^{\frac{2n}{3}}$, then with overwhelming probability for a random set A,

 $\mu(A) \lesssim q^{rac{3}{2}}.$

(Hence $\mu(A) \ll 2^n$ when $q \ll 2^{\frac{2n}{3}}$.)
For
$$A = \{a_1, \dots, a_q\} \subseteq \{0, 1\}^n$$
, let

$$\mu(A) = \max_{\substack{U, V \subseteq \{0, 1\}^n \ |U| = |V| = q}} |\{(a, u, v) \in A \times U \times V : a = u \oplus v\}|$$

If A is "structured", e.g. a vector space, then $\mu(A) = q^2$

Sum-capture problem: find upper bounds on $\mu(A)$ for a random set A

Theorem ([Bab89, Ste13])

For $q \le 2^{\frac{2n}{3}}$, then with overwhelming probability for a random set A,

 $\mu(A) \lesssim q^{rac{3}{2}}.$

(Hence $\mu(A) \ll 2^n$ when $q \ll 2^{\frac{2n}{3}}$.)

For
$$A = \{a_1, \dots, a_q\} \subseteq \{0, 1\}^n$$
, let

$$\mu(A) = \max_{\substack{U, V \subseteq \{0, 1\}^n \ |U| = |V| = q}} |\{(a, u, v) \in A \times U \times V : a = u \oplus v\}|$$

If A is "structured", e.g. a vector space, then $\mu(A) = q^2$

Sum-capture problem: find upper bounds on $\mu(A)$ for a random set A

Theorem ([Bab89, Ste13])

For $q \leq 2^{\frac{2n}{3}}$, then with overwhelming probability for a random set A,

$$\mu(A) \lesssim q^{rac{3}{2}}.$$

(Hence $\mu(A) \ll 2^n$ when $q \ll 2^{\frac{2n}{3}}$.)

In our case, we need to adapt the theorem to the case where

$$A = \{x_1 \oplus y_1, \dots, x_q \oplus y_q\} \simeq$$
 random

Theorem

Let \mathcal{D} be an adversary interacting with a random permutation E of $\{0,1\}^n$, resulting in a query transcript $\mathcal{Q}_E = \{(x_1, y_1), \dots, (x_q, y_q)\}$. Let

 $\mu(\mathcal{Q}_E) = \max_{\substack{U, V \subseteq \{0,1\}^n \\ |U| = |V| = q}} |\{((x, y), u, v) \in \mathcal{Q}_E \times U \times V : x \oplus y = u \oplus v\}|$

If $q \leq 2^{\frac{2n}{3}}$, then with overwhelming probability,

bad keys $\leq \mu(\mathcal{Q}_E) \leq 3(\sqrt{n}+1)q^{rac{3}{2}}.$

Proof: Fourier analysis.

In our case, we need to adapt the theorem to the case where

$$A = \{x_1 \oplus y_1, \dots, x_q \oplus y_q\} \simeq$$
 random

Theorem

Let \mathcal{D} be an adversary interacting with a random permutation E of $\{0,1\}^n$, resulting in a query transcript $\mathcal{Q}_E = \{(x_1, y_1), \dots, (x_q, y_q)\}$. Let

$$\mu(\mathcal{Q}_E) = \max_{\substack{U, V \subseteq \{0,1\}^n \\ |U| = |V| = q}} |\{((x, y), u, v) \in \mathcal{Q}_E \times U \times V : x \oplus y = u \oplus v\}|$$

If $q \leq 2^{\frac{2n}{3}}$, then with overwhelming probability,

$$\#$$
 bad keys $\leq \mu(\mathcal{Q}_{\mathsf{E}}) \leq 3(\sqrt{n}+1)q^{rac{3}{2}}.$

Proof: Fourier analysis.

In our case, we need to adapt the theorem to the case where

$$A = \{x_1 \oplus y_1, \dots, x_q \oplus y_q\} \simeq$$
 random

Theorem

Let \mathcal{D} be an adversary interacting with a random permutation E of $\{0,1\}^n$, resulting in a query transcript $\mathcal{Q}_E = \{(x_1, y_1), \dots, (x_q, y_q)\}$. Let

$$\mu(\mathcal{Q}_E) = \max_{\substack{U, V \subseteq \{0,1\}^n \\ |U| = |V| = q}} |\{((x, y), u, v) \in \mathcal{Q}_E \times U \times V : x \oplus y = u \oplus v\}|$$

If $q \leq 2^{\frac{2n}{3}}$, then with overwhelming probability,

bad keys
$$\leq \mu(\mathcal{Q}_E) \leq 3(\sqrt{n}+1)q^{\frac{3}{2}}$$
.

Proof: Fourier analysis.

Good transcripts

For a "good" transcript $\tau = (Q_E, Q_P)$ with the expected number of bad keys, we are reduced to the following permutation counting problem.

Permutation counting problem (simplified)

Let $X = \{x_1, \dots, x_q\}$ and $Y = \{y_1, \dots, y_q\}$ with $X \cap Y$ "small". Compare

$$p_{\text{real}} = \Pr[P \leftarrow_{\$} \mathcal{P}_n : P \circ P(x_i) = y_i \text{ for } i = 1, \dots, q]$$

and
$$p_{\text{ideal}} = \frac{1}{2^n (2^n - 1) \cdots (2^n - q + 1)} \quad (\Pr[E(x_i) = y_i])$$

Lemma

Assume
$$|X \cap Y| \le q/2^{n/3}$$
. Then $p_{\text{real}} \ge (1 - \varepsilon_1) p_{\text{ideal}}$ with $\varepsilon_1 = \mathcal{O}\left(\frac{q^3}{2^{2n}}\right)$.

Proof: intricate counting 🔅

Good transcripts

For a "good" transcript $\tau = (Q_E, Q_P)$ with the expected number of bad keys, we are reduced to the following permutation counting problem.

Permutation counting problem (simplified)

Let $X = \{x_1, \dots, x_q\}$ and $Y = \{y_1, \dots, y_q\}$ with $X \cap Y$ "small". Compare

$$p_{\text{real}} = \Pr[P \leftarrow_{\$} \mathcal{P}_n : P \circ P(x_i) = y_i \text{ for } i = 1, \dots, q]$$

and
$$p_{\text{ideal}} = \frac{1}{2^n (2^n - 1) \cdots (2^n - q + 1)} \quad (\Pr[E(x_i) = y_i])$$

Lemma

Assume
$$|X \cap Y| \leq q/2^{n/3}$$
. Then $p_{\text{real}} \geq (1 - \varepsilon_1) p_{\text{ideal}}$ with $\varepsilon_1 = \mathcal{O}\left(\frac{q^3}{2^{2n}}\right)$.

Proof: intricate counting 😇

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Random square permutation vs. random permutation

Random Square Permutation Problem

How many queries needs D to distinguish a random square permutation $P \circ P$ from a perfectly random permutation E?

Conjecture: indistinguishable up to $\sim 2^n$ queries

Best known attack: find a fixed point

 $(P \circ P \text{ has twice more fixed points than a random permutation})$

Chen, Lampe, Lee, Seurin, Steinberger

Minimizing the 2-Round EM Cipher

CRYPTO 2014 24 / 29

Random square permutation vs. random permutation

Random Square Permutation Problem

How many queries needs D to distinguish a random square permutation $P \circ P$ from a perfectly random permutation E?

Conjecture: indistinguishable up to $\sim 2^n$ queries

Best known attack: find a fixed point $(P \circ P \text{ has twice more fixed points than a random permutation})$

• minimal Even-Mansour cipher secure against generic attacks up to $\mathcal{O}(2^{\frac{2n}{3}})$ queries:

• first "beyond birthday-bound" security result for AES-like ciphers that does not require the "independent round keys" assumption

open problems:

- remove technical restrictions (mainly \mathbb{F}_2 -linear key-schedule)
- extend the result to r ≥ 3 rounds! (generalization of the sum-capture problem?)

• minimal Even-Mansour cipher secure against generic attacks up to $\mathcal{O}(2^{\frac{2n}{3}})$ queries:

- first "beyond birthday-bound" security result for AES-like ciphers that does not require the "independent round keys" assumption
- open problems:
 - remove technical restrictions (mainly \mathbb{F}_2 -linear key-schedule)
 - extend the result to r ≥ 3 rounds! (generalization of the sum-capture problem?)

• minimal Even-Mansour cipher secure against generic attacks up to $\mathcal{O}(2^{\frac{2n}{3}})$ queries:

- first "beyond birthday-bound" security result for AES-like ciphers that does not require the "independent round keys" assumption
- open problems:
 - remove technical restrictions (mainly \mathbb{F}_2 -linear key-schedule)
 - extend the result to r ≥ 3 rounds! (generalization of the sum-capture problem?)

Thanks for your attention!

Comments or questions?

Chen, Lampe, Lee, Seurin, Steinberger Minimizing the 2-Round EM Cipher

László Babai.

The Fourier Transform and Equations over Finite Abelian Groups: An introduction to the method of trigonometric sums.

Lecture notes, December 1989.

Available at http://people.cs.uchicago.edu/~laci/reu02/fourier.pdf.

Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert, John P. Steinberger, and Elmar Tischhauser.

Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations - (Extended Abstract).

In David Pointcheval and Thomas Johansson, editors, *Advances in Cryptology - EUROCRYPT 2012*, volume 7237 of *Lecture Notes in Computer Science*, pages 45–62. Springer, 2012.

References II

Shan Chen and John Steinberger.

Tight Security Bounds for Key-Alternating Ciphers.

In Phong Q. Nguyen and Elisabeth Oswald, editors, *Advances in Cryptology - EUROCRYPT 2014*, volume 8441 of *Lecture Notes in Computer Science*, pages 327–350. Springer, 2014.

Full version available at http://eprint.iacr.org/2013/222.

Orr Dunkelman, Nathan Keller, and Adi Shamir.

Minimalism in Cryptography: The Even-Mansour Scheme Revisited.

In David Pointcheval and Thomas Johansson, editors, *Advances in Cryptology - EUROCRYPT 2012*, volume 7237 of *Lecture Notes in Computer Science*, pages 336–354. Springer, 2012.

Shimon Even and Yishay Mansour.

A Construction of a Cipher from a Single Pseudorandom Permutation.

Journal of Cryptology, 10(3):151–162, 1997.

Rodolphe Lampe, Jacques Patarin, and Yannick Seurin.

An Asymptotically Tight Security Analysis of the Iterated Even-Mansour Cipher.

In Xiaoyun Wang and Kazue Sako, editors, *Advances in Cryptology - ASIACRYPT 2012*, volume 7658 of *Lecture Notes in Computer Science*, pages 278–295. Springer, 2012.

Jo

John Steinberger.

Improved Security Bounds for Key-Alternating Ciphers via Hellinger Distance. IACR Cryptology ePrint Archive, Report 2012/481, 2012. Available at http://eprint.iacr.org/2012/481.

John Steinberger.

Counting solutions to additive equations in random sets.

arXiv Report 1309.5582, 2013.

Available at http://arxiv.org/abs/1309.5582.