HB[#]: increasing the security and efficiency of HB⁺

Henri Gilbert, Matt Robshaw, and Yannick Seurin

Eurocrypt 2008 - April 16, 2008

the context

- pervasive computing (RFID tags . . .)
- the issue: protection against duplication and counterfeiting ⇒ authentication
- pervasive = very low cost => very few gates for security
- current proposed solutions use e.g.
 - blight-weight block ciphers (AES, PRESENT...)
 - dedicated asymmetric cryptography (crypto-GPS, SQUASH)
 - protocols based on abstract hash functions and PRFs
- recent proposal HB⁺ at Crypto '05 by Juels and Weis: very simple, security proof

outline

- HB⁺: strengths and weaknesses
- introducing RANDOM-HB[#]
- introducing HB[#]
- Ouafi et al. 's MIM attack
- conclusions

the ancestor HB [Hopper and Blum 2001]

- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected $(t>\eta r)$

ro HB+

ndom-HB #

the protocol HB⁺ [Juels and Weis 2005]

- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected $(t>\eta r)$

the protocol HB⁺

- typical parameter values are:
 - $k \simeq 250$ (length of the secret vectors)
 - $\blacktriangleright~\eta\simeq 0.125$ to 0.25 (noise level)
 - $r \simeq 80$ (number of rounds)
 - $\blacktriangleright~t\simeq 30$ (acceptance threshold)
- necessary trade-off between false acceptance rate, false rejection rate and efficiency
- rounds can be parallelized [Katz, Shin, 2006]

distribution of the number of errors

• practical limitation: transmission costs (2kr+r bits, = tens of thousands)

the security of HB⁺

- B HB is provably secure against *passive* (eavesdropping) attacks
- HB⁺ is provably secure against *active* (in some sense) attacks
- the security relies on the hardness of the Learning from Parity with Noise (LPN) problem:

Given q noisy samples $(a_i, a_i \cdot x \oplus v_i)$, where x is a secret k-bit vector and $\Pr[v_i = 1] = \eta$, find x.

- similar to the problem of decoding a random linear code (NP-complete)
- best solving algorithms require T, $q = 2^{\Theta(k/\log(k))}$: BKW [2003], LF [2006]
- numerical examples:
 - \blacktriangleright for k=512 and $\eta=0.25$, LF requires $\,q\simeq 2^{89}$
 - \blacktriangleright for k=768 and $\eta=0.01$, LF requires $\,q\simeq 2^{74}$

security models

- passive attacks: the adversary can only eavesdrop the conversations between an honest tag and an honest reader, and then tries to impersonate the tag
- active attacks on the tag only (a.k.a. active attacks in the detection model): the adversary first interacts with an honest tag (actively, but without access to the reader), and then tries to impersonate the tag
- man-in-the-middle attacks (a.k.a. active attacks in the prevention model): the adversary can manipulate the tag-reader conversation and observe whether the authentication is successful or not

	passive	active (TAG)	active (MIM)
HB	OK	KO	KO
HB ⁺	OK	OK	KO

a MIM attack against HB⁺ [GRS 2005]

- at each round, the noise bit $\, v_{\mathfrak{i}} \,$ is replaced by $\, v_{\mathfrak{i}} \oplus \, \delta \cdot x \,$

a MIM attack against HB⁺ [GRS 2005]

- one authentication enables to retrieve one bit of x
- repeating the procedure with |x| linearly independent δ 's enables to derive x
- impersonating the tag is then easy (use b = 0)
- note that the authentication fails \simeq half of the time: this may raise an alarm (hence the name detection-based model)

distribution of the number of errors

previous variants of HB⁺

three recent proposals aiming at thwarting MIM attacks:

- HB-MP [Munilla and Peinado, 2007]
- HB * [Duc and Kim, 2007]
- ▶ HB⁺⁺ [Bringer, Chabanne and Dottax, 2006]
- these three variants have been cryptanalysed recently [Gilbert, Robshaw and Seurin (FC '08)]
- latest proposals . . .
 - Trusted-HB [Bringer, Chabanne, 2008]
 - PUF-HB [Hammouri, Sunar, ACNS 2008]

introducing RANDOM-HB[#]

tag reader $k_X \times m$ and $k_Y \times m$ -bit $k_X \times m$ and $k_Y \times m$ -bit secret matrices X and Y secret matrices X and Y draw a random b $k_{\rm Y}$ -bit blinding vector bdraw a random a k_X -bit challenge α compute $z = a \cdot X \oplus b \cdot Y \oplus v$ check \boldsymbol{Z} where $\Pr[\nu[i] = 1] = \eta < \frac{1}{2}$ $\mathsf{Hwt}(\boldsymbol{z} \oplus \boldsymbol{\alpha} \cdot \mathbf{X} \oplus \boldsymbol{b} \cdot \mathbf{Y}) \leqslant \mathsf{t}$

one single pass

- accept iff the number of errors is less than some threshold $t > \eta m$

introducing RANDOM-HB[#]

- HB $^+$ = many blinding vector/challenge pairs $\,(\,\alpha_i,\,b_i)\,,$ one secret pair (x,y)
- RANDOM-HB[#] = one blinding vector/challenge pair (a, b), many secret pairs (x_i, y_i)
- \Rightarrow effectively reduces the communication complexity

security models: refinement

- recall the three models:
 - passive attacks (eavesdropping)
 - TAG attacks (the adversary can actively query an honest tag)
 - MIM attacks (man-in-the-middle attacks, the adversary can manipulate the tag-reader conversation and observe whether the authentication is successful or not)

random-HB #

- we refine the MIM model and define the GRS-MIM attacks: the adversary can only manipulate the messages from the reader to the tag
- HB⁺ is susceptible to linear-time GRS-MIM attacks (hence the name)

security proof for RANDOM-HB[#]

relies on the MHB-puzzle:

Given q noisy samples $(a_i, a_i \cdot X \oplus v_i)$, where X is a secret $k \times m$ matrix and $\Pr[v_i[j] = 1] = \eta$, and a random challenge a, find $a \cdot X$.

random-HB #

- LPN is hard implies that no efficient adversary can guess $a \cdot X$ with probability noticeably greater than $\frac{1}{2^m}$
- this is proved using results on weakly verifiable puzzles [CHS05]; see the full version of the paper

conclusion

security proof for RANDOM-HB[#]

• we reduce the security of RANDOM-HB[#] in the GRS-MIM model to the LPN problem:

- 1: weakly verifiable puzzles
- 2: technical . . . (see the paper)
- S: if the adversary adds δ to the challenge α, the additional error vector δ · X will have very high Hamming weight (because of the high minimal distance of X) and the reader will always reject
- general MIM adversaries are not handled by our security proof ...

introducing HB[#]

- main drawback of ${}_{\rm RANDOM}\text{-HB}^{\#}$ is storage: $(k_X+k_Y)\cdot m$ bits, *i.e.* tens of Kbits
- HB[#] is identical to RANDOM-HB[#] except for the form of the matrices: it uses Toeplitz matrices
- reduces the storage requirements to $(k_X + k_Y + 2m 2)$ bits: practical ($\simeq 1.5$ Kbits)
- Toeplitz matrices have good randomization properties: $(x \to x \cdot T)_T$ is a $1/2^m$ -balanced function family (for any non-zero vector a, $a \cdot T$ is uniformly distributed)

 $\begin{array}{cccc} t_{3} & t_{2} & t_{1} \\ & t_{3} & t_{2} \\ & \ddots & & t_{3} \end{array}$

security of HB[#]

- no formal reduction for HB[#], only heuristic arguments using the previously mentioned property of Toeplitz matrices
- however we proved that

 $HB^{\#}$ secure against TAG attacks \Rightarrow $HB^{\#}$ secure against GRS-MIM attack

conclusion

general MIM attacks (!one-night slides!)

- at the rump session, Ouafi et al. outlined a (non GRS-) MIM attack against (RANDOM-)HB[#]
- idea: use an eavesdropped communication (α, β, γ = α ⋅ X ⊕ β ⋅ Y ⊕ ν) between the tag and the reader, add it to subsequent communications with a few more perturbations and use the reader decision to "remove" the noise ν
- breaks the proposed parameters with less authentications that we expected

general MIM attacks (!one-night slides!)

- asymptotic complexity?
- polynomial only for ill-chosen parameters, namely when the XOR of two random noise vectors is still below the threshold:

$$\eta_2 \mathfrak{m} < \mathfrak{t}$$
, where $\eta_2 = 2\eta(1-\eta)$

- when the parameters are such that $\eta_2m>t\,,$ the attack becomes exponential
- this may be the missing condition to complete the security proof . . .

distribution of the number of errors

HB+

HB #

conclusion

conclusions...

	HB ⁺	random-HB [#]	HB [#]
Storage (bits)	500	150 000	1 500
Transmission (bits/auth.)	50 000	1 000	1 000
Entropy gen. by the tag (bits/auth.)	25 000	500	500
TAG attack	OK	OK	? (prob. OK) (*)
GRS-MIM attack	KO	OK	? (prob. OK) (implied by (*))
MIM attack	KO	??	??

full paper available from http://eprint.iacr.org/2008/028

...and a trailer

- what other cryptographic primitive can you build from LPN?
- we propose a symmetric encryption scheme whose security can be reduced to the LPN problem
- this is LPN-C, to be presented at ICALP 2008...

conclusion

thanks for your attention!

questions?