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Key-Alternating Cipher (KAC): Definition
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An r -round key-alternating cipher:

• plaintext x ∈ {0, 1}n, ciphertext y ∈ {0, 1}n

• master key k ∈ {0, 1}κ

• the Pi ’s are public permutations on {0, 1}n

• the fi ’s are key derivation functions mapping k to n-bit “round keys”
• examples: most SPNs (AES, SERPENT, PRESENT, LED, . . . )
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Various Key-Schedule Types
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Round keys can be:

• independent (total key-length κ = (r + 1)n)
• derived from an n-bit master key (κ = n), e.g.

• trivial key-schedule: (k, k, . . . , k)
• more complex: (f0(k), f1(k), . . . , fr (k))

• anything else (e.g. 2n-bit master key (k0, k1) and round keys
(k0, k1, k0, k1, . . .) as in LED-128)
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Proving the Security of KACs
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Question
How can we “prove” security?

• against a general adversary:
⇒ too hard (unconditional complexity lower bound!)

• against specific attacks (differential, linear. . . ):
⇒ use specific design of P1, . . . ,Pr (count active S-boxes, etc.)

• against generic attacks:
⇒ Random Permutation Model for P1, . . . ,Pr
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Analyzing KACs in the Random Permutation Model

qc
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• the Pi ’s are modeled as public random permutation oracles to which
the adversary can only make black-box queries (both to Pi and P−1i )

• adversary cannot exploit any weakness of the Pi ’s ⇒ generic attacks
• trades complexity for randomness (' Random Oracle Model)
• complexity measure of the adversary:

• qc = # queries to the cipher = plaintext/ciphertext pairs (data D)
• qp = # queries to each internal permutation oracle (time T )
• but otherwise computationally unbounded

• ⇒ information-theoretic proof of security
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Analyzing KACs in the Random Permutation Model
Even and Mansour seminal work:
• this model was first proposed by Even and Mansour at
ASIACRYPT ’91 for r = 1 round

• they showed that the simple cipher k1 ⊕ P(k0 ⊕ x) is a secure PRP
up to ∼ 2 n

2 queries of the adversary to P and to the cipher
• similar result when k0 = k1 [KR01, DKS12]

x P
k0

y
k1

︸ ︷︷ ︸
EMP

• improved bound as r increases: PRP up to ∼ 2
rn

r+1 queries [CS14]
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“the” Iterated Even-Mansour (IEM) Cipher

Construction

=
generic class of key-alternating ciphers

analyzed in the Random Permutation Model
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Formalizing Block Cipher Security: Pseudorandomness
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Related-Key Attacks

The Related-Key Attack Model [BK03]:

• stronger adversarial model: the adversary can specify Related-Key
Deriving (RKD) functions φ and receive Eφ(k)(x) and/or E−1φ(k)(y)

• the block cipher should behave as an ideal cipher (an independent
random permutation for each key)

• impossibility results for too “large” sets of RKDs
• positive results for limited sets of RKDs or using number-theoretic
constructions

• we will consider XOR-RKAs: the set of RKD functions is

{φ∆ : k 7→ k ⊕∆,∆ ∈ {0, 1}κ}
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XOR-RKAs against the IEM Cipher: Formalization
Real world

0/1

(∆, x)

EMk⊕∆(x)

x

k

P1
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P2

f1

Pr y

fr

P1, . . . , Pr

qp

Ideal world

0/1

IC

(∆, x)

ICk⊕∆(x)

P1, . . . , Pr

qp

• real world: IEM cipher with a random key k ←$ {0, 1}κ

• ideal world: ideal cipher IC independent from P1, . . . ,Pr
• Rand. Perm. Model: D has oracle access to P1, . . . ,Pr in both worlds
• qc queries to the IEM/IC and qp queries to each inner perm.
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First Observation: Independent Round Keys Fails

P1

x

x ′

k0 ⊕∆0

k0 ⊕∆′0

P2 Pr y

k1 kr

RK Distinguisher for independent round keys:
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A Simple Attack for One Round, Trivial Key-Schedule
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y2 = v ⊕ k ⊕∆2

Check that y1 ⊕ y2 = ∆1 ⊕∆2 (∗)

• 2 queries to the RK oracle, 0 queries to P1
• (∗) holds with proba. 1 for the EM cipher
• (∗) holds with proba. 2−n for an ideal cipher
• works for any linear key-schedule
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Security for Three Rounds, Trivial Key-Schedule

x P1

k
P2

k
P3

k
y

k

Theorem (Cogliati-Seurin [CS15])
For the 3-round IEM cipher with the trivial key-schedule:

Advxor-rka
EM[n,3](qc , qp) ≤ 6qcqp

2n +
4q2c
2n .

Proof sketch:
• D can create forward collisions at P1 or backward collisions at P3

• but proba. to create a collision at P2 is . q2c/2n

• no collision at P2
⇒ ∼ single-key security of 1-round EM . qcqp/2n
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Security for One Round and a Nonlinear Key-Schedule

x

k
n

n
P1

f

y

f

Theorem (Cogliati-Seurin [CS15])
For the 1-round EM cipher with key-schedule f = (f0, f1):

Advxor-rka
EM[n,1,f ](qc , qp) ≤ 2qcqp

2n +
δ(f )q2c
2n ,

where δ(f ) = maxa,b∈{0,1}n,a 6=0 |{x ∈ {0, 1}n : f (x ⊕ a)⊕ f (x) = b}|.
(δ(f ) = 2 for an APN permutation.)
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Some Observations
Application to tweakable block ciphers:

• from any XOR-RKA secure block cipher E , one can construct a
tweakable block cipher [LRW02, BK03]

Ẽ (k, t, x)
def
= E (k ⊕ t, x)

x P1

k ⊕ t
P2

k ⊕ t
P3

k ⊕ t
y

k ⊕ t

Independent work by Farshim and Procter at FSE 2015 [FP15]:

• similar result for 3 rounds (slightly worse bound, game-based proof)
• 2 rounds: XOR-RKA security against chosen-plaintext attacks
• 1 round: RKA-security for more limited sets of RKDs
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Outline

Introduction: Key-Alternating Ciphers in the Random Permutation Model

Security Against Related-Key Attacks

Security Against Chosen-Key Attacks
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Formalizing Chosen-Key Attacks

• informal goal: find tuples of key/pt/ct (ki , xi , yi ) with a property which
is hard to satisfy for an ideal cipher

• no formal definition for a single, completely instantiated block cipher E
• simply because, e.g., E0(0) has a specific, non-random value. . .
• OK this does not count
• but what counts as a chosen-key attack exactly?
• rigorous definition possible for a family of block ciphers based on some
underlying ideal primitive

• e.g., IEM cipher based on a tuple of random permutations!
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Formalizing Chosen-Key Attacks
Definition (Evasive relation)
An m-ary relation R is (q, ε)-evasive (w.r.t. an ideal cipher E ) if any
adversary A making at most q queries to E finds triples (k1, x1, y1), . . . ,
(km, xm, ym) (with Eki (xi ) = yi) satisfying R with probability at most ε.

Example

• consider E in Davies-Meyer mode f (k, x) := Ek(x)⊕ x
• finding a preimage of 0 for f is a unary

(
q,O( q

2n )
)
-evasive relation

for E [BRS02]
• finding a collision for f is a binary

(
q,O(q2

2n )
)
-evasive relation for

E [BRS02]
• for BC-based hashing, most hash function security notions can be
recast as evasive relations for the underlying BC
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Formalizing Chosen-Key Attacks
Definition (Correlation Intractability)
A block cipher construction CF based on some underlying primitive F is
said to be (q, ε)-correlation intractable w.r.t. an m-ary relation R if any
adversary A making at most q queries to F finds triples (k1, x1, y1), . . . ,
(km, xm, ym) (with CF

ki
(xi ) = yi) satisfying R with probability at most ε.

Definition (Resistance to Chosen-Key Attacks)
Informally, a block cipher construction CF is said resistant to chosen-key
attacks if for any (q, ε)-evasive relation R, CF is (q′, ε′)-correlation
intractable w.r.t. R with q′ ' q and ε′ ' ε.

For an
y relation

R, find
ing triplets

(ki, xi, yi)

satisfyi
ng R should

be “almost as
hard” for the

constru
ction C

F as for a
n ideal c

ipher.

Questions:
• How do we prove prove resistance to chosen-key attacks?
• How many rounds for the IEM cipher to be resistant to CKAs?
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A Chosen-Key Attack for Three Rounds [LS13]
P1 P2 P3

u1 v1

x1

u2 v2 u3 v3 y1

k1

x2

u′2 v ′2 u′3 v ′3 y2

k2 k3 k4

y3

y4

u′1 v ′1x3

x4

• tuples (k1, x1, y1), (k2, x2, y2), (k3, x3, y3), (k4, x4, y4) satisfy
k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0
x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0
y1 ⊕ y2 ⊕ y3 ⊕ y4 = 0 .

• this is a
(
q,O(q4

2n )
)
-evasive relation for an ideal cipher

• ⇒ the 3-round IEM cipher is not resistant to CKAs
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• this is a
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2n )
)
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Proving CKA Resistance: Indifferentiability
Real world

0/1

(k , x)

EMk(x)

x

k

P1

f0

P2

f1

Pr y

fr

P1, . . . , Pr

Ideal world

0/1

IC

(k , x)

ICk(x)

P1, . . . , Pr

Simulator S

• real world: IEM cipher + random permutations P1, . . . ,Pr

• ideal world: ideal cipher IC + simulator S
• no hidden secret in the real world!
(but D can only make a limited number of queries)
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Definition (Indifferentiability [MRH04])
A block cipher construction is said (qd , qs , ε)-indifferentiable from an
ideal cipher if there exists a simulator S such that for any distinguisher D
making at most qd queries in total, S makes at most qs ideal cipher
queries and D distinguishes the two worlds with adv. at most ε
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Two Flavors of Indifferentiability
Real world
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Simulator S
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• full indifferentiability: D can queries its oracle as it wishes
• sequential indifferentiability: two query phases

1. D first queries only Pi ’s/S
2. and then only EM/IC

• full indiff. ⇒ sequential indiff.
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Composition Theorems
Theorem (Composition for full indiff. [MRH04])
Informally, if a block cipher construction CF is full-indifferentiable from
an ideal cipher, then any cryptosystem proven secure with an ideal cipher
remains provably secure when used with CF (for cryptosystems whose
security is defined by a single-stage game [RSS11]).

Theorem (Composition for seq. indiff. [MPS12, CS15])
If a block cipher construction CF is (qd , qs , ε)-seq-indiff. from an ideal
cipher, and if a relation R is (qs , εic)-evasive for an ideal cipher, then CF

is (qd , εic + ε)-correlation intractable w.r.t. R.

success proba.

queries
εic

qs

IC
(qd , qs , ε)-seq-indiff.

εic + ε

qd

CF
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Indifferentiability Results for the IEM Cipher

Theorem (Andreeva et al. [ABD+13])
The 5-round IEM cipher with a key-schedule modeled as a random oracle
is fully indifferentiable from an ideal cipher.
NB: strong assumption on the key-schedule (often invertible in real BCs)

Theorem (Lampe-Seurin [LS13])
The 12-round IEM cipher with the trivial key-schedule is fully
indifferentiable from an ideal cipher.

Theorem (Cogliati-Seurin [CS15])
The 4-round IEM cipher with the trivial key-schedule is sequentially
indifferentiable from an ideal cipher with qs = O(q2d ) and ε = O(q4d/2n)
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Seq-indifferentiability for 4 Rounds: Simulator

x P1

k
P2

k
P3

k
P4

k
y

k

x2 y2 x3 y3

Detect chain

IC

k

x4 y4

Adapt Perm.Adapt Perm.

• k = y2 ⊕ x3
• x4 = y3 ⊕ k = y2 ⊕ x3 ⊕ y3

∼ random

• y4 = IC(k, x)⊕ k

∼ random
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CKA Resistance for the 4-Round IEM Cipher

By the composition theorem “seq-indiff. ⇒ correlation-intractability”:

Theorem
Let R be a (q2, εic)-evasive relation w.r.t. an ideal cipher. Then the
4-round IEM with the trivial key-schedule is

(
q, εic +O(q4

2n )
)
correlation

intractable w.r.t. R.

Example
Consider f = 4-round IEM cipher in Davies-Meyer mode. Then
• f is

(
q,O(q4

2n )
)
-preimage resistant

• f is
(
q,O(q4

2n )
)
-collision resistant

(in the Random Permutation Model)
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Conclusion

Morality:

• idealized models can be fruitful
• practical meaning of the results is debatable:

• the high-level structure of SPNs is sound (and may even yield
something close to an ideal cipher)

• says little about concrete block ciphers (inner permutations of, say,
AES are too simple)

Open problems:

• RKA security beyond the birthday bound (4 rounds → 2 2n
3 -security?)

• seq-indifferentiability: find a construction with linear simulator
complexity and small distinguishing advantage (∼ qd/2n)
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Summary of Known Results

Security # of Key Security Simul.
Ref.

notion rounds schedule bound (qS/tS)

Single-key
r ≥ 1 independent 2

rn
r+1 — [CS14]

1 trivial 2 n
2 — [EM97, DKS12]

2 trivial 2 2n
3 — [CLL+14]

3 trivial 2 n
2 — [CS15, FP15]

XOR RKA
1 nonlinear 2 n

2 — [CS15]

CKA (Seq-ind.) 4 trivial 2 n
4 q2 / q2 [CS15]

Full indiff.
5 rand. oracle 2 n

10 q2 / q3 [ABD+13]
12 trivial 2 n

12 q4 / q6 [LS13]
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The End. . .

Thanks for your attention!

Comments or questions?
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