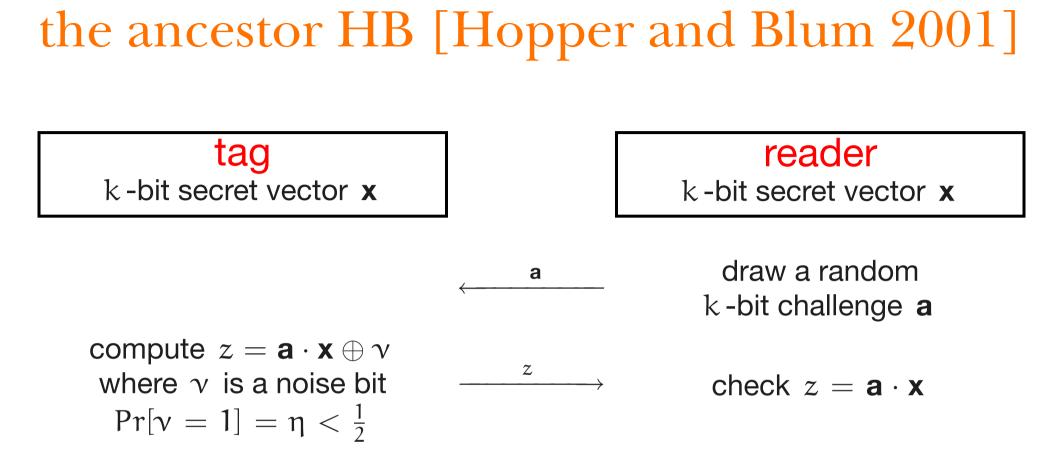
Good Variants of HB⁺ are Hard to Find (*The Cryptanalysis of HB*⁺⁺, *HB*^{*} and *HB-MP*) Henri Gilbert, Matt Robshaw, and Yannick Seurin

Financial Crypto 2008 – January 29, 2008

intro |HB+ |HB-MP |HB* |HB++ |conclusion

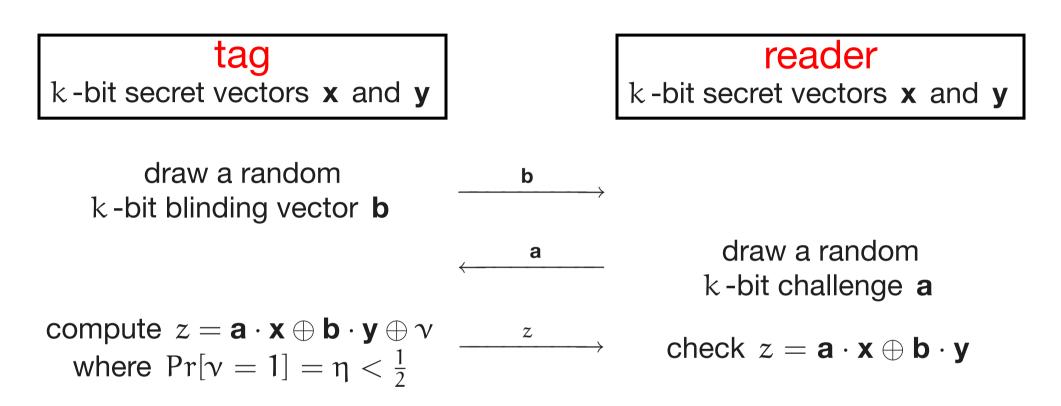

the context

- pervasive computing (RFID tags ...)
- the issue: protection against duplication and counterfeiting => authentication
- pervasive = very low cost => very few gates for security
- current proposed solutions use *e.g.*
 - blight-weight block ciphers (AES, PRESENT...)
 - dedicated asymmetric cryptography (GPS)
 - protocols based on abstract hash functions and PRFs
- recent proposal HB⁺ at Crypto '05 by Juels and Weis: very simple, security proof

intro HB-	- HB-MP	HB*	HB++	conclusion
-----------	---------	-----	------	------------

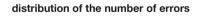
outline

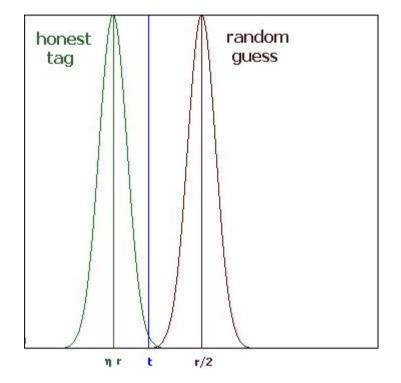
- HB⁺: strengths and weaknesses
- cryptanalysis of HB-MP
- cryptanalysis of HB*
- cryptanalysis of HB⁺⁺
- conclusions . . . and a trailer



HB+

- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected $(t>\eta r)$


the protocol HB⁺ [Juels and Weis 2005]



- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected $(t>\eta r)$

the protocol HB⁺

- typical parameter values are:
 - $k \simeq 250$ (length of the secret vectors)
 - $\blacktriangleright~\eta\simeq 0.125$ to 0.25 (noise level)
 - $r \simeq 80$ (number of rounds)
 - $\blacktriangleright~t\simeq 30$ (acceptance threshold)
- necessary trade-off between false acceptance rate, false rejection rate and efficiency

HB+

IB* HB++

the security of HB⁺

- HB is provably secure against *passive* (eavesdropping) attacks
- HB⁺ is provably secure against *active* (in some sense) attacks
- the security relies on the hardness of the Learning from Parity with Noise (LPN) problem:

HB+

Given q noisy samples $(a_i, a_i \cdot x \oplus v_i)$, where x is a secret k-bit vector and $\Pr[v_i = 1] = \eta$, find x.

- similar to the problem of decoding a random linear code (NP-complete)
- best solving algorithms require T, $q = 2^{\Theta(k/\log(k))}$: BKW [2003], LF [2006]
- numerical examples:

• for k = 512 and $\eta = 0.25$, LF requires $q \simeq 2^{89}$

 \blacktriangleright for k=768 and $\eta=0.01$, LF requires $\,q\simeq 2^{74}$

Financial Crypto 2008 – Y. Seurin

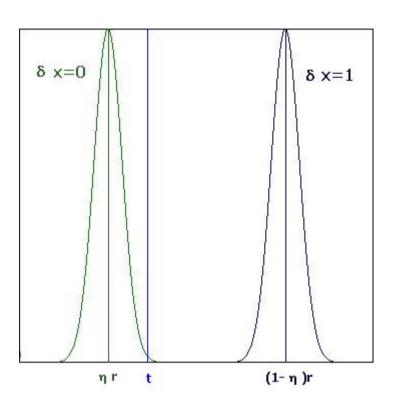
6

intro HB+ HB-MP HB* HB++ co

security models

- passive attacks: the adversary can only eavesdrop the conversations between an honest tag and an honest reader, and then tries to impersonate the tag
- active attacks on the tag only (a.k.a. active attacks in the detection model): the adversary first interact with an honest tag (actively, but without access to the reader), and then tries to impersonate the tag
- man-in-the-middle attacks (a.k.a. active attacks in the prevention model): the adversary can manipulate the tag-reader conversation and observe whether the authentication is successful or not

	passive	active (TAG)	active (MIM)
HB	OK	KO	KO
HB ⁺	OK	OK	KO


HB+ a man-in-the-middle attack against HB⁺ [GRS 2005] reader tag k-bit secret k-bit secret vectors x and y vectors **x** and **y** draw a random b k-bit blinding vector **b** a′=a⊕δ Adv! draw a random k-bit challenge a compute z' $z' = \mathsf{a}' \cdot \mathsf{x} \oplus \mathsf{b} \cdot \mathsf{y} \oplus \mathsf{v}$ check $z' = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$ where $\Pr[\nu = 1] = \eta < \frac{1}{2}$ accept? $\rightarrow \delta \cdot \mathbf{x} = 0$ reject? $\rightarrow \delta \cdot \mathbf{x} = 1$

• at each round, the noise bit v_i is replaced by $v_i \oplus \delta \cdot \mathbf{x}$

intro HB+ HB-MP HB* HB++ conclusio

a man-in-the-middle attack against HB⁺ [GRS 2005]

- one authentication enables to retrieve one bit of x
- repeating the procedure with |x| linearly independent δ's enables to derive x
- impersonating the tag is then easy (use b = 0)
- note that the authentication fails \simeq half of the time: this may raise an alarm (hence the name detection-based model)

distribution of the number of errors

we need a variant of HB⁺ resisting MIM attacks

- three recent proposals:
 - HB-MP
 - ► HB *
 - ► HB ++
- we show how to cryptanalyse them

cryptanalysis of HB-MP

- HB-MP was introduced by Munilla and Peinado
- aim: obtain a more simple (2-pass) protocol but at least as secure as HB⁺
- however, there is a passive attack against HB-MP
- please see the paper for the details

intro |HB+ |HB-

HB* ∣⊦

conclusion

HB* [Duc and Kim 2007]

tagk -bit secret vectorsx , y and s

reader

k-bit secret vectors **x**, **y** and **s**

draw a random
$$\mathbf{b} \in_{\mathbb{R}} \{0, 1\}^{k}$$

draw $\gamma \in_{\mathbb{R}} \{0, 1\} \mid \Pr[\gamma = 1] = \eta' \xrightarrow{(\mathbf{b}, w)}$
compute $w = \mathbf{b} \cdot \mathbf{s} \oplus \gamma$

draw a random $\mathbf{a} \in_{R} \{0, 1\}^{k}$

$$\begin{array}{l} \text{if } \gamma = 0 \text{ compute} \\ z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus \mathbf{v} \\ \text{else compute } z = \mathbf{a} \cdot \mathbf{y} \oplus \mathbf{b} \cdot \mathbf{x} \oplus \mathbf{v} \end{array} \xrightarrow{z} \begin{array}{l} \text{if } \mathbf{b} \cdot \mathbf{s} = \mathbf{w} \text{ check } z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \\ \text{else check } z = \mathbf{a} \cdot \mathbf{y} \oplus \mathbf{b} \cdot \mathbf{x} \end{array}$$

а

- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected

a MIM attack on HB*

- try the GRS attack: add a constant δ to the challenges **a**; then:
- if η' is to low, most of rounds will use equation $\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$: this is equivalent to HB⁺ (true when $\eta' \leq \frac{t-\eta r}{r(1-2\eta)}$)

HB*

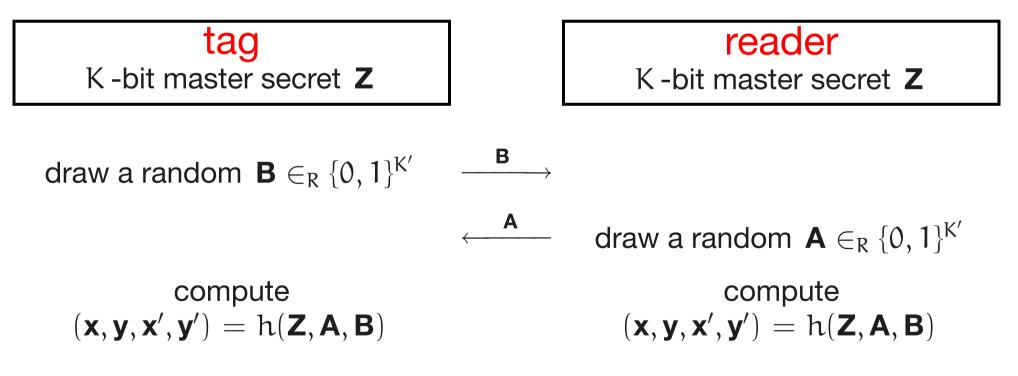
- conversely, if η' is close to 1/2, the following will happen:
 - if $\delta \cdot \mathbf{x} = 0$ and $\delta \cdot \mathbf{y} = 0$ then the reader will accept
 - in all other cases the reader will reject ($\delta \cdot \mathbf{x} = 1$ or $\delta \cdot \mathbf{y} = 1$)
 - hence the adversary is able to learn the vector space $\langle x, y \rangle$

intro HB+ HB-MP HB*

HB++

a MIM attack on HB*

the attack proceeds as follows:


- \blacktriangleright find lin. ind. values $\delta_1,\ldots,\delta_{k-2}$ such that the authentication succeeds
- with overwhelming probability this gives the unordered set $\{c_1, c_2, c_3\} = \{x, y, x \oplus y\}$
- Identify x ⊕ y in {c₁, c₂, c₃} by querying the honest tag with a = b at each round ⇒ z = a · (x ⊕ y) ⊕ v
- first impersonation succeeds with proba 1/2
- Following impersonations succeed with proba 1
- Inear complexity: O(4k) authentications are required

HB* HB⁺⁺ [Bringer, Chabanne, and Dottax 2005] reader tag k-bit session secret vectors k-bit session secret vectors **x**, **y**, **x**', **y**' **x**, **y**, **x**', **y**' draw a random $\mathbf{b} \in_{\mathbb{R}} \{0, 1\}^k$ draw a random $\mathbf{a} \in_{\mathbb{R}} \{0, 1\}^k$ compute $z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus \mathbf{v}$ check $\xrightarrow{(z,z')} z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \text{ and}$ and $z' = (f(\mathbf{a})^{\ll i}) \cdot \mathbf{x}' \oplus (f(\mathbf{b})^{\ll i}) \cdot \mathbf{y}' \oplus \mathbf{v}'$ $z' = (f(\mathbf{a})^{\ll i}) \cdot \mathbf{x}' \oplus (f(\mathbf{b})^{\ll i}) \cdot \mathbf{y}'$

- this is repeated for r rounds
- let N (resp. N') be the number of errors on *z* (resp. *z*'), the authentication is successful iff N \leq t and N' \leq t

HB⁺⁺ [Bringer, Chabanne, and Dottax 2005]

- uses a k-bit to k-bit permutation f made of a layer of 5-bit S-box S to compute the second response bit z' = (f(a)^{≪i}) ⋅ x' ⊕ (f(b)^{≪i}) ⋅ y'
- the secrets x, y, x', y' are renewed before each authentication with a master secret Z and a universal hash function h

a MIM attack on HB⁺⁺: phase 1

aims at gathering approximate equations on (a subset of the bits of) x

HB++

• a simple GRS attack fails: the error vector on z'_i is


 $\boldsymbol{\nu}_i' \oplus (f(\boldsymbol{a_i} \oplus \boldsymbol{\delta}) \oplus f(\boldsymbol{a_i}))^{\ll i} \cdot \boldsymbol{x}$

 \Rightarrow randomized, hence $N'\simeq r/2$ and the reader always rejects

• however, what happens if one disturbs s < r rounds?

a MIM attack on HB⁺⁺: phase 1

- if s is to low, the distributions of N when $\delta \cdot \mathbf{x} = 0$ and when $\delta \cdot \mathbf{x} = 1$ are not well distributed around t
- if s is to high, the expected value of N' is to high and the reader always rejects
- but for s such that $E(N') \simeq t$, it's OK!
- when the reader accepts (p = 1/4), $\delta \cdot \mathbf{x} = 0$ with high probability

r/2

HB++

• example: for $k = 80, r = 80, \eta = 0.25$, t = 30, by disturbing s = 40 rounds, $Pr[false guess] \simeq 0.01$

a MIM attack on HB⁺⁺: phase 2

• getting into the details of $h(\mathbf{Z}, \mathbf{A}, \mathbf{B})$:

- $Z = (Z_1, ..., Z_{48})$: 48 16-bit words = 768 bits in total
- $M = (A, B) = (M_1, ..., M_{10})$: 10 16-bit words = 160 bits in total
- ▶ $h(\mathbf{Z}, \mathbf{A}, \mathbf{B}) = (\mathbf{x}, \mathbf{y}, \mathbf{x}', \mathbf{y}')$ = $(g_{Z_1...Z_{10}}(\mathbf{M}), g_{Z_3...Z_{13}}(\mathbf{M}), \dots, g_{Z_{39}...Z_{48}}(\mathbf{M}))$: 20 16-bit words
- if (A, B) is known, each of these 20 16-bit words is an affine function of 160 Z bits and 80 quadratic functions of Z bits = 240 expanded key bits
- thanks to the approximate equations of phase 1, solve an LPN problem with key length 240 and low noise parameter

a MIM attack on HB⁺⁺: summary

• step 1: disturb the authentication protocol with δ 's affecting one single 16-bit word of **x** and get approximate equations on the secret bits allowing to derive **x** \Rightarrow 5 LPN problems to solve

HB++

- step 2: derive the expanded key bits allowing to derive x' (5 additional LPN problems)
- step 3: impersonate the tag by reusing previous blinding vectors b
- complexity estimate: for for $k = 80, r = 80, \eta = 0.25, t = 30$, by disturbing s = 40 rounds, $4 \times 10 \times 2^{30} \simeq 2^{35}$ authentications needed

conclusions...

	passive	active (TAG)	active (MIM)
HB	OK	KO	KO
HB ⁺	OK	OK	KO
HB-MP	KO	KO	KO
HB*	OK	OK	KO
HB ⁺⁺	OK	OK	KO
?	OK	OK	OK

• HB⁺ remains the most attractive member of the family...

- but still has some practical problems: MIM attack, high communication complexity (50 to 100 Kbit / auth.)
- a (simple) variant resistant to MIM attacks would be highly interesting

conclusion

...and a trailer

- introducing: HB[#] [Gilbert, Robshaw, and Seurin, Eurocrypt 2008]
- main idea: generalize the form of the secrets from vectors to matrices
- main advantages: reduced communication complexity, provable security against a large class of MIM attacks
- drawback: more storage required, but remains practical
- see you in Istanbul for more details ;-) (in the meanwhile, the paper is available on e-print)

conclusion

conclusion

thanks for your attention!

questions?

Financial Crypto 2008 – Y. Seurin