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the context

= the authentication protocol HB * by Juels and Weis [JWO05] recently re-
newed interest in cryptographic protocols based on the LPN (Learning
Parity with Noise) problem, the problem of learning an unknown vector x
given noisy versions of its scalar product a - x with random vectors a

= this problem seems promising to obtain efficient protocols since it implies
only basic operations on GF(2)

= in this work, we present a probabilistic symmetric encryption scheme,
named LPN-C, whose security against chosen-plaintext attacks can be
proved assuming the hardness of the LPN problem
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outline

= the LPN problem: a brief survey
= description and analysis of the encryption scheme LPN-C
= concrete parameters, practical optimizations

= conclusion & open problems
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|LPN problem

the LPN problem

Given g noisy samples (ai, a;-x @ Vi), where x is a secret
k -bit vector, the a;’s are random, and Pr|v; = 1] =, find x.

= similar to the problem of decoding a random linear code (NP-complete)

= best solving algorithms require T,q = 20(5g7) ; Blum, Kalai, Wasserman
IBKWO3] , Levieil, Fouque [LFO6]

= a variant by Lyubashevsky [L05] requires q = O(k'*¢) but T = 20(gtegw)
= numerical examples:

» for k =512 and n = 0.25, LF requires T, q ~ 2%
» for k =768 and n = 0.01, LF requires T,q ~ 27
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|LPN problem

previous schemes based on LPN

= PRNG by Blum et al. [BFKL93]

= public-key encryption scheme by Regev [R05] based on the LWE problem,
the generalization of LPN to GF(p), p > 2

= the HB family of authentication protocols:

» HB [HBO1]
» HB+ [JWO05]

» HB ** [BCDO06]

» HB * [DKO7]

» HB* [GRS08]

» Trusted-HB [BCO7]
» PUF-HB [HS08]
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[LPN-C

description of LPN-C

= public components: a (linear) error-correcting code C : {0, 1} — {0, 1}™
of parameters [m, 1, d] and the corresponding decoding algorithm C~

= secret key: a k x m binary matrix M
= encryption:

» 1 -bit plaintext x, encode it to C(x)

» draw a random k -bit vector a and a noise vector v where
Privii] =1] =n

» ciphertext (a,y),where y=C(x)doa-Mov

= decryption: oninput (a,y), compute y®a-M and decode the resulting
value, or output _L if unable to decode
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[LPN-C

securlty 1ntuition

=y=Cx)eda-Mov

= in a chosen-plaintext attack, the adversary only learns a; - M & v; for
random vectors a;

= hardness of the LPN problem implies that the adversary cannot guess
a- M for a new random a better than with a priori probability (“MHB
puzzle” [GRS08]), hence will have no information on a challenge ciphertext
(a,C(x)da-Mov)

ICALP 2008 -Y. Seurin 6,/20 Orange Labs



[LPN-C

decryption failures

= decryption failures happen when Hwt(v) > t, where t = |%1| is the
correction capacity of the code

= when the noise is randomly drawn,
= /m
Pre = (1 L \ym—i
DF Z <i>ﬂ (1—m)
1=t+1
is negligible for mm < t

= for eliminating decryption failures, the Hamming weight of the noise vector
can be tested before being used and regenerated when Hwt(v) > t, but
this may impact the security proof
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[LPN-C

quasi-homomorphic encryption

= the scheme enjoys some kind of “homomorphism” property

= given two plaintexts

(a>y) — (a>C(X) Da- M@V)
(d,y')=(a,Cx)®ead - MaV),

one has:
yoy =Cxaex)o(adad) Mo (v V)
sothat (a® a’,ydy’) is avalid ciphertext for x ®x’ if Hwt(vadv') <t

= vdVv' is anoise vector with noise parameter ' = 2n(1—m);if m < t,
the homomorphism property holds with overwhelming probability
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security notions

= security goals: indistinguishability (IND) and non-malleability (NM)

= adversaries run in two phases; at the end of the first phase they output a
distribution on the plaintexts and receive a ciphertext challenge

= they are denoted P X-CY according to the oracles (P for encryption, C
for decryption) they can access
» X, Y = 0: the adversary can never access the oracle

» X, Y = 1: the adversary can only access the oracle during phase 1
(non-adaptive)

» X, Y = 2: the adversary can access the oracle during phases 1 and
2, i.e. after having seen the challenge ciphertext (adaptive)
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security notions

= relations between different types of attacks have been studied by Katz
and Yung [KYO0G]:

= IND-P1-CY & IND-P2-CY and NM-P1-CY & NM-P2-CY
= IND-P2-C2 < NM-P2-C2
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security proof: a useful lemma

= notations:

» Uy,1 will be the oracle returning uniformly random (k+ 1) -bit strings
» Tls, will be the oracle returning the (k + 1) -bit string (a,a-s ®v),
where a is uniformly random and Pr[v = 1] =n

= we have the following decision-to-search lemma (Regev [R05], Katz and
Shin [KS06]):

lemma: if there is an efficient oracle adversary distinguishing between the

two oracles Uy and Tl , then there is an efficient adversary solving
the LPN problem
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IND-P2-CO security proof

= P2-CO0 adversary A breaking the indistinguishability of the scheme
= we use it to distinguish between U, ; and TIs,, as follows:
» draw a random j € [1..m] and a random k x (m — j) binary matrix
M/
» use the following method to encrypt:

» get asample (a,z) from the oracle O

» form the m -bit masking vector b = r||z||(a- M’ & v) where 7 is
a random (j — 1) -bit string and v an (m — j) -bit noise vector

e return the ciphertext (a, C(x) & b)

» play the indistinguishability game with A ; if A distinguishes, return
1, otherwise return O
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IND-P2-CO security proof

= masking vector b = r||z||[(a- M' & V)

= when O = Uy,1, the j first bits of b are random and the m — j last
ones are distributed according to an LPN distribution; for j = m the
ciphertexts are completely random

= when O =TIlg,, the j — 1 first bits of b are random and the m —j + 1
last ones are distributed according to an LPN distribution; for j = 1 the
encryption is perfectly simulated

= when expressing the advantage of this distinguisher, the terms for j = 2
to (m—1) cancel and we obtain advantage 6/m if the advantage of the
original distinguisher A was %
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malleability

= as is, the scheme is clearly malleable (PO-CO attack):

= given a ciphertext (a,y) corresponding to some plaintext x, the adver-
sary can simply modify it to (a,y @ C(x')), which will correspond to the
plaintext x ® x’

= since IND-P2-C2 < NM-P2-C2, the scheme cannot be IND-P2-C2 or
even IND-PO-C2 either

= what about non-adaptive ciphertext attacks?
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an IND-PO-C1 attack

= idea: query the decryption oracle on (a,yi) many times with the same
a and random y;’s to get approximate equationson a- M

= when y; & a- M is at Hamming distance less than t from a codeword,
the decryption oracle will return x; such that Hwt(C(x;) dyi®a-M) < t

= this will give an approximation of each bit of a- M with noise parameter
less than t/m ; repeating the experiment sufficiently many times with the
same a enables to retrieve a - M with high probability, hence to retrieve
the secret key M

= this attack works only if the probability that a random wm -bit string is
decodable is sufficiently high, i.e. if the code is good enough
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P2-C2 security

= one can obtain an IND/NM-P2-C2 scheme by appending a MAC to the
ciphertext (Encrypt-then-MAC paradigm studied by Bellare et al. [BNOO])

= we propose the following MAC based on the LPN problem:

» let M bea | x U secret binary matrix and H be a one-way function

» for X € {0, 1}* define MACm(X) = H(X)-M @ v, where v is anoise
vector of parameter n

= one can prove the security of this MAC in the random oracle model for
H , using the hardness of the “MHB puzzle” [GRS08]

Given g noisy samples (ai, a;- M & vi), where M isasecret k xm
matrix and Pr[v;[j] = 1] =n, and a random challenge a, find a- M.
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example parameters

= expansion factor o =

iciphertext]  m4k

Iplaintext]

T

| parameters

k | m T d [expansion|key size|key size| Ppr
factor (Toeplitz)

512 10.125| 80 27 21 21.9 40,960 | 591 0.42

512 10.125| 160 42 42 16 81,920 | 671 0.44

/68 | 0.05 | 80 53 9 16 61,440 847 0.37

/68 | 0.05 | 160 99 17 9.4 122,880 927 0.41

/768 | 0.05 | 160 75 25 12.4 122,880 927 0.06
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| parameters

possible variants and optimizations

= use of Toeplitz matrices to reduce the key

size ( B2 h\
t; ©
= Toeplitz matrices have good randomization t3

properties: (x — x-T)r isa 1/2™-balanced \th_]
function family (for any non-zero vector a,
a - I is uniformly distributed)

/

= possibility to pre-share the random vectors a used to encrypt, or to re-
generate them from a PRNG and a small seed; then o = =, the expansion
factor of the error-correcting code

ICALP 2008 -Y. Seurin 18/20 Orange Labs



conclusion & open problems

= we presented LPN-C, a probabilistic symmetric encryption scheme
whose security relies on the LPN problem

= it extends the range of cryptographic protocols based on the LPN problem

= implementation would be quite efficient but practical problems remain:
expansion of the ciphertext, high key size

= open problems include:

» understand the impact of the use of Toeplitz matrices on the security
of the scheme

» devise an efficient MAC whose security relies only on the LPN problem
to obtain an IND/NM-P2-C2 secure encryption scheme
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thanks for your attention!

comments V questions?
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