How to Encrypt with the LPN Problem

Henri Gilbert, Matt Robshaw, and Yannick Seurin

Orange Labs

ICALP 2008 - July 9, 2008

intro LPN problem LPN-C security parameters conclusion

the context

- the authentication protocol HB⁺ by Juels and Weis [JW05] recently renewed interest in cryptographic protocols based on the LPN (*Learning Parity with Noise*) problem, the problem of learning an unknown vector x given noisy versions of its scalar product $a \cdot x$ with random vectors a
- this problem seems promising to obtain efficient protocols since it implies only basic operations on GF(2)
- In this work, we present a probabilistic symmetric encryption scheme, named LPN-C, whose security against chosen-plaintext attacks can be proved assuming the hardness of the LPN problem

outline

- the LPN problem: a brief survey
- description and analysis of the encryption scheme LPN-C
- concrete parameters, practical optimizations
- conclusion & open problems

the LPN problem

Given q noisy samples $(a_i, a_i \cdot x \oplus v_i)$, where x is a secret k-bit vector, the a_i 's are random, and $Pr[v_i = 1] = \eta$, find x.

LPN problem

- similar to the problem of decoding a random linear code (NP-complete)
- best solving algorithms require T, $q = 2^{\Theta(\frac{k}{\log k})}$: Blum, Kalai, Wasserman [BKW03], Levieil, Fouque [LF06]
- a variant by Lyubashevsky [L05] requires $q = O(k^{1+\epsilon})$ but $T = 2^{O(\frac{k}{\log \log k})}$
- numerical examples:

• for
$$k = 512$$
 and $\eta = 0.25$, LF requires T, $q \simeq 2^{89}$

• for
$$k=768$$
 and $\eta=0.01$, LF requires T, $q\simeq 2^{74}$

previous schemes based on LPN

- PRNG by Blum et al. [BFKL93]
- public-key encryption scheme by Regev [R05] based on the LWE problem, the generalization of LPN to GF(p), $\,p>2$
- the HB family of authentication protocols:
 - ► HB [HB01]
 - ► HB⁺ [JW05]
 - ► HB⁺⁺ [BCD06]
 - ► HB * [DK07]
 - ▶ HB[#] [GRS08]
 - Trusted-HB [BC07]
 - PUF-HB [HS08]

description of LPN-C

- public components: a (linear) error-correcting code $C : \{0, 1\}^r \rightarrow \{0, 1\}^m$ of parameters [m, r, d] and the corresponding decoding algorithm C^{-1}
- **secret key:** a $k \times m$ binary matrix M

encryption:

- r-bit plaintext x, encode it to C(x)
- draw a random k -bit vector $\, \alpha \,$ and a noise vector $\, \nu \,$ where $Pr[\nu[i]=1]=\eta$
- ciphertext (a, y), where $y = C(x) \oplus a \cdot M \oplus v$
- decryption: on input (a, y), compute $y \oplus a \cdot M$ and decode the resulting value, or output \perp if unable to decode

security intuition

- $\mathbf{y} = \mathbf{C}(\mathbf{x}) \oplus \mathbf{a} \cdot \mathbf{M} \oplus \mathbf{v}$
- in a chosen-plaintext attack, the adversary only learns $\, a_i \cdot M \oplus \nu_i \,$ for random vectors $\, a_i \,$
- hardness of the LPN problem implies that the adversary cannot guess $a \cdot M$ for a new random a better than with *a priori* probability ("MHB puzzle" [GRS08]), hence will have no information on a challenge ciphertext $(a, C(x) \oplus a \cdot M \oplus v)$

LPN-C

decryption failures

- decryption failures happen when $Hwt(\mathbf{v}) > t$, where $t = \left|\frac{d-1}{2}\right|$ is the correction capacity of the code
- when the noise is randomly drawn,

$$P_{\mathsf{DF}} = \sum_{i=t+1}^{m} \binom{m}{i} \eta^{i} (1-\eta)^{m-i}$$

is negligible for $\eta m < t$

for eliminating decryption failures, the Hamming weight of the noise vector can be tested before being used and regenerated when Hwt(v) > t, but this may impact the security proof

quasi-homomorphic encryption

the scheme enjoys some kind of "homomorphism" property

given two plaintexts

$$(\mathbf{a},\mathbf{y}) = (\mathbf{a}, \mathbf{C}(\mathbf{x}) \oplus \mathbf{a} \cdot \mathbf{M} \oplus \mathbf{v})$$
$$(\mathbf{a}',\mathbf{y}') = (\mathbf{a}', \mathbf{C}(\mathbf{x}') \oplus \mathbf{a}' \cdot \mathbf{M} \oplus \mathbf{v}'),$$

one has:

$$\mathbf{y} \oplus \mathbf{y}' = C(\mathbf{x} \oplus \mathbf{x}') \oplus (\mathbf{a} \oplus \mathbf{a}') \cdot \mathbf{M} \oplus (\mathbf{v} \oplus \mathbf{v}')$$

so that $(a \oplus a', y \oplus y')$ is a valid ciphertext for $x \oplus x'$ if $Hwt(v \oplus v') \leq t$

• $v \oplus v'$ is a noise vector with noise parameter $\eta' = 2\eta(1-\eta)$; if $\eta'm < t$, the homomorphism property holds with overwhelming probability

security notions

- security goals: indistinguishability (IND) and non-malleability (NM)
- adversaries run in two phases; at the end of the first phase they output a distribution on the plaintexts and receive a ciphertext challenge

security

- they are denoted PX-CY according to the oracles (P for encryption, C for decryption) they can access
 - X, Y = 0: the adversary can never access the oracle
 - X, Y = 1: the adversary can only access the oracle during phase 1 (non-adaptive)
 - X, Y = 2: the adversary can access the oracle during phases 1 and 2, *i.e.* after having seen the challenge ciphertext (adaptive)

security notions

- relations between different types of attacks have been studied by Katz and Yung [KY06]:
- IND-P1-C Y \Leftrightarrow IND-P2-C Y and NM-P1-C Y \Leftrightarrow NM-P2-C Y
- IND-P2-C2 \Leftrightarrow NM-P2-C2

security proof: a useful lemma

notations:

- U_{k+1} will be the oracle returning uniformly random (k+1) -bit strings
- $\Pi_{s,\eta}$ will be the oracle returning the (k+1)-bit string $(a, a \cdot s \oplus v)$, where a is uniformly random and $Pr[v = 1] = \eta$
- we have the following decision-to-search lemma (Regev [R05], Katz and Shin [KS06]):

lemma: if there is an efficient oracle adversary distinguishing between the two oracles U_{k+1} and $\Pi_{s,\eta}$, then there is an efficient adversary solving the LPN problem

IND-P2-C0 security proof

- P2-C0 adversary ${\cal A}$ breaking the indistinguishability of the scheme
- we use it to distinguish between U_{k+1} and $\Pi_{s,\eta}$ as follows:
 - draw a random $j \in [1..m]$ and a random $k \times (m-j)$ binary matrix M'
 - use the following method to encrypt:
 - get a sample (a, z) from the oracle 0
 - form the m-bit masking vector $\mathbf{b} = \mathbf{r} \| \mathbf{z} \| (\mathbf{a} \cdot M' \oplus \mathbf{v})$ where r is a random (j-1)-bit string and \mathbf{v} an (m-j)-bit noise vector
 - return the ciphertext $(a, C(x) \oplus b)$
 - play the indistinguishability game with A; if A distinguishes, return 1, otherwise return 0

IND-P2-C0 security proof

- masking vector $\mathbf{b} = \mathbf{r} \| z \| (\mathbf{a} \cdot \mathbf{M}' \oplus \mathbf{v})$
- when $0 = U_{k+1}$, the j first bits of b are random and the m j last ones are distributed according to an LPN distribution; for j = m the ciphertexts are completely random
- when $\mathfrak{O} = \prod_{s,\eta}$, the j-1 first bits of b are random and the m-j+1 last ones are distributed according to an LPN distribution; for j = 1 the encryption is perfectly simulated
- when expressing the advantage of this distinguisher, the terms for j = 2 to (m-1) cancel and we obtain advantage δ/m if the advantage of the original distinguisher \mathcal{A} was δ

malleability

- as is, the scheme is clearly malleable (P0-C0 attack):
- given a ciphertext (a, y) corresponding to some plaintext x, the adversary can simply modify it to $(a, y \oplus C(x'))$, which will correspond to the plaintext $x \oplus x'$

security

- since IND-P2-C2 NM-P2-C2, the scheme cannot be IND-P2-C2 or even IND-P0-C2 either
- what about non-adaptive ciphertext attacks?

conclusion

an IND-P0-C1 attack

- idea: query the decryption oracle on (α,y_i) many times with the same α and random y_i 's to get approximate equations on $\alpha\cdot M$
- when $y_i \oplus a \cdot M$ is at Hamming distance less than t from a codeword, the decryption oracle will return x_i such that $Hwt(C(x_i) \oplus y_i \oplus a \cdot M) \leq t$
- this will give an approximation of each bit of $a \cdot M$ with noise parameter less than t/m; repeating the experiment sufficiently many times with the same a enables to retrieve $a \cdot M$ with high probability, hence to retrieve the secret key M
- this attack works only if the probability that a random m-bit string is decodable is sufficiently high, *i.e.* if the code is good enough

P2-C2 security

 one can obtain an IND/NM-P2-C2 scheme by appending a MAC to the ciphertext (*Encrypt-then-MAC* paradigm studied by Bellare et al. [BN00])

security

- we propose the following MAC based on the LPN problem:
 - ▶ let *M* be a $l \times l'$ secret binary matrix and *H* be a one-way function
 - for $X\in\{0,1\}^*$ define $MAC_M(X)=H(X)\cdot M\oplus \nu$, where ν is a noise vector of parameter η
- one can prove the security of this MAC in the random oracle model for H, using the hardness of the "MHB puzzle" [GRS08]

Given q noisy samples $(a_i, a_i \cdot M \oplus v_i)$, where M is a secret $k \times m$ matrix and $Pr[v_i[j] = 1] = \eta$, and a random challenge a, find $a \cdot M$.

conclusion

example parameters

• expansion factor
$$\sigma = \frac{|ciphertext|}{|plaintext|} = \frac{m+k}{r}$$

k	η	m	r	d	expansion	key size	key size	P_{DF}
					factor		(Toeplitz)	
512	0.125	80	27	21	21.9	40,960	591	0.42
512	0.125	160	42	42	16	81,920	671	0.44
768	0.05	80	53	9	16	61,440	847	0.37
768	0.05	160	99	17	9.4	122,880	927	0.41
768	0.05	160	75	25	12.4	122,880	927	0.06

possible variants and optimizations

- use of Toeplitz matrices to reduce the key size
- Toeplitz matrices have good randomization properties: $(x \rightarrow x \cdot T)_T$ is a $1/2^m$ -balanced function family (for any non-zero vector a, $a \cdot T$ is uniformly distributed)

parameters

• possibility to pre-share the random vectors α used to encrypt, or to regenerate them from a PRNG and a small seed; then $\sigma = \frac{m}{r}$, the expansion factor of the error-correcting code

conclusion & open problems

- we presented LPN-C, a probabilistic symmetric encryption scheme whose security relies on the LPN problem
- it extends the range of cryptographic protocols based on the LPN problem
- implementation would be quite efficient but practical problems remain: expansion of the ciphertext, high key size
- open problems include:
 - understand the impact of the use of Toeplitz matrices on the security of the scheme
 - devise an efficient MAC whose security relies only on the LPN problem to obtain an IND/NM-P2-C2 secure encryption scheme

conclusion

thanks for your attention!

comments \vee questions?