[How to Encrypt with the LPN Problem](#page-1-0)

Henri Gilbert, Matt Robshaw, and Yannick Seurin

Orange Labs

ICALP 2008 – July 9, 2008

intro [LPN problem](#page-3-0) [LPN-C](#page-5-0) [security](#page-9-0) [parameters](#page-17-0) [conclusion](#page-19-0)

the context

- the authentication protocol $HB⁺$ by Juels and Weis [JW05] recently renewed interest in cryptographic protocols based on the LPN (*Learning Parity with Noise*) problem, the problem of learning an unknown vector x given noisy versions of its scalar product $a \cdot x$ with random vectors a
- **this problem seems promising to obtain efficient protocols since it implies** only basic operations on GF(2)
- **in this work, we present a probabilistic symmetric encryption scheme,** named LPN-C, whose security against chosen-plaintext attacks can be proved assuming the hardness of the LPN problem

outline

- the LPN problem: a brief survey
- description and analysis of the encryption scheme LPN-C
- **CONCRETE DETA:** concrete parameters, practical optimizations
- **CONCLUSION & Open problems**

the LPN problem

Given q noisy samples $(\mathbf{a_i}, \mathbf{a_i} \cdot \mathbf{x} \oplus \mathbf{v_i})$, where \mathbf{x} is a secret k-bit vector, the a_i 's are random, and $Pr[v_i = 1] = \eta$, find x .

l[intro](#page-1-0) **LPN problem** [LPN-C](#page-5-0) [security](#page-9-0) [parameters](#page-17-0) [conclusion](#page-19-0)

- similar to the problem of decoding a random linear code (NP-complete)
- best solving algorithms require T, $\mathfrak{q}=2^{\Theta(\frac{\mathsf{k}}{\log \mathsf{k}})}$: Blum, Kalai, Wasserman [BKW03] , Levieil, Fouque [LF06]
- a variant by Lyubashevsky [L05] requires $\,\mathfrak{q}=\mathfrak{O}(\mathsf{k}^{1+\epsilon})\,$ but $\,\mathsf{T}=2^{\mathfrak{O}(\frac{\mathsf{k}}{\log\log\mathsf{k}})}$
- numerical examples:

• for
$$
k = 512
$$
 and $\eta = 0.25$, LF requires T, $q \simeq 2^{89}$

• for
$$
k = 768
$$
 and $\eta = 0.01$, LF requires T, $q \simeq 2^{74}$

previous schemes based on LPN

- **PRNG by Blum et al. [BFKL93]**
- **public-key encryption scheme by Regev [R05] based on the LWE problem,** the generalization of LPN to GF(p), $p > 2$
- the HB family of authentication protocols:
	- ▶ HB [HB01]
	- \cdot HB $+$ [JW05]
	- \cdot HB^{$++$} [BCD06]
	- HB [∗] [DK07]
	- HB# [GRS08]
	- ▶ Trusted-HB [BC07]
	- PUF-HB [HS08]

description of LPN-C

- **public components:** a (linear) error-correcting code $C: \{0, 1\}^r \rightarrow \{0, 1\}^m$ of parameters $\left[\mathfrak{m},\mathfrak{r},\mathfrak{d}\right]$ and the corresponding decoding algorithm C^{-1}
- **secret key:** a $k \times m$ binary matrix M

encryption:

- r -bit plaintext x , encode it to $C(x)$
- \triangleright draw a random k-bit vector α and a noise vector γ where $Pr[v[i] = 1] = \eta$
- \triangleright ciphertext (a, y) , where $y = C(x) \oplus a \cdot M \oplus v$
- **decryption:** on input (a, y), compute y⊕a·M and decode the resulting value, or output \perp if unable to decode

security intuition

- $\bullet \mathbf{y} = \mathbf{C}(\mathbf{x}) \oplus \mathbf{a} \cdot \mathbf{M} \oplus \mathbf{v}$
- in a chosen-plaintext attack, the adversary only learns $\, {\bm a}_{\mathbf{i}} \cdot \bm{\mathsf{M}} \oplus \bm{\nu}_{\mathbf{i}} \,$ for random vectors a_i
- **hardness of the LPN problem implies that the adversary cannot guess** a · M for a new random a better than with *a priori* probability ("MHB puzzle" [GRS08]), hence will have no information on a challenge ciphertext $(a, C(x) \oplus a \cdot M \oplus v)$

decryption failures

- decryption failures happen when Hwt $(v) > t$, where $t = \frac{d-1}{2}$ 2 $|$ is the correction capacity of the code
- when the noise is randomly drawn,

$$
P_{DF}=\sum_{i=t+1}^m\binom{m}{i}\eta^i(1-\eta)^{m-i}
$$

is negligible for η m $<$ t

Fight for eliminating decryption failures, the Hamming weight of the noise vector can be tested before being used and regenerated when $Hwt(v) > t$, but this may impact the security proof

quasi-homomorphic encryption

the scheme enjoys some kind of "homomorphism" property

given two plaintexts

$$
(\alpha, y) = (\alpha, C(x) \oplus \alpha \cdot M \oplus \nu)
$$

$$
(\alpha', y') = (\alpha', C(x') \oplus \alpha' \cdot M \oplus \nu'),
$$

one has:

$$
\boldsymbol{y} \oplus \boldsymbol{y}' = C(\boldsymbol{x} \oplus \boldsymbol{x}') \oplus (\boldsymbol{\alpha} \oplus \boldsymbol{\alpha}') \cdot M \oplus (\boldsymbol{\nu} \oplus \boldsymbol{\nu}')
$$

so that $(\, \mathbf{a} \oplus \mathbf{a}', y \oplus y')\,$ is a valid ciphertext for $\, \mathbf{x} \oplus \mathbf{x}'\,$ if $\, \mathsf{Hwt}(\mathbf{v} \oplus \mathbf{v}') \leqslant \mathbf{t}$

 ${\bf v}\oplus{\bf v}'$ is a noise vector with noise parameter $\eta'=2\eta(1\!-\!\eta)$; if $\eta' m <$ $\!$, the homomorphism property holds with overwhelming probability

security notions

- security goals: indistinguishability (IND) and non-malleability (NM)
- **adversaries run in two phases; at the end of the first phase they output a** distribution on the plaintexts and receive a ciphertext challenge

|[intro](#page-1-0) | [LPN problem](#page-3-0) | [LPN-C](#page-5-0) | security | [parameters](#page-17-0) | [conclusion](#page-19-0)

- they are denoted PX -C Y according to the oracles (P for encryption, C for decryption) they can access
	- \triangleright X, Y = 0: the adversary can never access the oracle
	- \times X, Y = 1: the adversary can only access the oracle during phase 1 (non-adaptive)
	- \triangleright X, Y = 2: the adversary can access the oracle during phases 1 and 2, *i.e.* after having seen the challenge ciphertext (adaptive)

security notions

- **relations between different types of attacks have been studied by Katz** and Yung [KY06]:
- IND-P1-C Y \Leftrightarrow IND-P2-C Y and NM-P1-C Y \Leftrightarrow NM-P2-C Y
- $IND-P2-C2 \Leftrightarrow NM-P2-C2$

security proof: a useful lemma

notations:

- \blacktriangleright U_{k+1} will be the oracle returning uniformly random $(k+1)$ -bit strings
- \triangleright $\Pi_{s,n}$ will be the oracle returning the $(k+1)$ -bit string $(a, a \cdot s \oplus v)$, where α is uniformly random and $Pr[\nu = 1] = \eta$
- we have the following decision-to-search lemma (Regev [R05], Katz and Shin [KS06]):

lemma: if there is an efficient oracle adversary distinguishing between the two oracles U_{k+1} and $\Pi_{s,n}$, then there is an efficient adversary solving the LPN problem

IND-P2-C0 security proof

- \blacksquare P2-C0 adversary A breaking the indistinguishability of the scheme
- we use it to distinguish between U_{k+1} and $\Pi_{s,n}$ as follows:
	- draw a random $j \in [1..m]$ and a random $k \times (m j)$ binary matrix M'
	- ▶ use the following method to encrypt:
		- get a sample (a, z) from the oracle θ
		- form the m-bit masking vector $\mathbf{b} = \mathbf{r} ||z|| (\mathbf{a} \cdot \mathbf{M}' \oplus \mathbf{v})$ where r is a random $(j - 1)$ -bit string and ν an $(m - j)$ -bit noise vector
		- return the ciphertext $(a, C(x) \oplus b)$
	- play the indistinguishability game with A ; if A distinguishes, return 1, otherwise return 0

IND-P2-C0 security proof

- **n** masking vector $\mathbf{b} = \mathbf{r} ||z|| (\mathbf{a} \cdot \mathbf{M}' \oplus \mathbf{v})$
- when $0 = U_{k+1}$, the j first bits of b are random and the $m j$ last ones are distributed according to an LPN distribution; for $j = m$ the ciphertexts are completely random
- when $\theta = \Pi_{s,n}$, the j 1 first bits of b are random and the $m j + 1$ last ones are distributed according to an LPN distribution; for $j = 1$ the encryption is perfectly simulated
- when expressing the advantage of this distinguisher, the terms for $j = 2$ to $(m-1)$ cancel and we obtain advantage δ/m if the advantage of the original distinguisher A was δ

malleability

- as is, the scheme is clearly malleable (P0-C0 attack):
- given a ciphertext (a, y) corresponding to some plaintext x , the adversary can simply modify it to $(\mathbf{a},\mathbf{y}\oplus\mathsf{C}(\mathbf{x}'))$, which will correspond to the plaintext $\mathbf{x} \oplus \mathbf{x}'$

l[intro](#page-1-0) [LPN problem](#page-3-0) [LPN-C](#page-5-0) **[security](#page-9-0)** [parameters](#page-17-0) [conclusion](#page-19-0)

- since IND-P2-C2 \Leftrightarrow NM-P2-C2, the scheme cannot be IND-P2-C2 or even IND-P0-C2 either
- what about non-adaptive ciphertext attacks?

an IND-P0-C1 attack

- idea: query the decryption oracle on (a, y_i) many times with the same α and random y_i 's to get approximate equations on $\alpha \cdot M$
- when $y_i \oplus a \cdot M$ is at Hamming distance less than t from a codeword, the decryption oracle will return x_i such that $Hwt(C(x_i) \oplus y_i \oplus a \cdot M) \leq t$
- **this will give an approximation of each bit of** $\alpha \cdot M$ **with noise parameter** less than t/m ; repeating the experiment sufficiently many times with the same α enables to retrieve $\alpha \cdot M$ with high probability, hence to retrieve the secret key M
- **this attack works only if the probability that a random** m **-bit string is** decodable is sufficiently high, *i.e.* if the code is good enough

P2-C2 security

one can obtain an IND/NM-P2-C2 scheme by appending a MAC to the ciphertext (*Encrypt-then-MAC* paradigm studied by Bellare et al. [BN00])

[intro](#page-1-0) [LPN problem](#page-3-0) [LPN-C](#page-5-0) **[security](#page-9-0)** [parameters](#page-17-0) [conclusion](#page-19-0)

- we propose the following MAC based on the LPN problem:
	- let M be a $l \times l'$ secret binary matrix and H be a one-way function
	- for $\mathbf{X}\in\{0,1\}^*$ define $\mathsf{MAC}_{\mathcal{M}}(\mathbf{X})=\mathsf{H}(\mathbf{X})\cdot\mathsf{M}\oplus\mathbf{v}$, where \mathbf{v} is a noise vector of parameter η
- **one can prove the security of this MAC in the random oracle model for** H , using the hardness of the "MHB puzzle" [GRS08]

Given q noisy samples $(a_i, a_i \cdot M \oplus v_i)$, where M is a secret $k \times m$ matrix and $\Pr[\mathbf{\nu_i}[j] = 1] = \eta$, and a random challenge α , find $\alpha \cdot M$.

example parameters

■ expansion factor
$$
\sigma = \frac{|\text{ciphertext}|}{|\text{plaintext}|} = \frac{m+k}{r}
$$

possible variants and optimizations

- use of Toeplitz matrices to reduce the key size
- Toeplitz matrices have good randomization properties: $(x \rightarrow x \cdot T)_T$ is a $1/2^m$ -balanced function family (for any non-zero vector α , α \cdot T is uniformly distributed)

 $\sqrt{ }$ \vert t_3 t_2 t_1 t_3 t_2 \cdot t₃ t_{k+m-1} \setminus $\Bigg\}$

l[intro](#page-1-0) [LPN problem](#page-3-0) [LPN-C](#page-5-0) [security](#page-9-0) **[parameters](#page-17-0)** [conclusion](#page-19-0)

possibility to pre-share the random vectors α used to encrypt, or to regenerate them from a PRNG and a small seed; then $\sigma = \frac{m}{r}$ $\frac{\mathfrak{m}}{\mathfrak{r}}$, the expansion factor of the error-correcting code

conclusion & open problems

- we presented LPN-C, a probabilistic symmetric encryption scheme whose security relies on the LPN problem
- it extends the range of cryptographic protocols based on the LPN problem
- implementation would be quite efficient but practical problems remain: expansion of the ciphertext, high key size
- open problems include:
	- understand the impact of the use of Toeplitz matrices on the security of the scheme
	- devise an efficient MAC whose security relies only on the LPN problem to obtain an IND/NM-P2-C2 secure encryption scheme

thanks for your attention!

comments ∨ questions?