New Constructions and Applications of Trapdoor DDH Groups

Yannick Seurin

ANSSI, France

March 1, PKC 2013

Yannick Seurin (ANSSI)

Trapdoor DDH Groups

PKC 2013 1 / 27

4 3 > 4 3

Introduction: CDH versus DDH

• group \mathbb{G} , element $G \in \mathbb{G}$ of large order

- CDH problem: given $X = G^x$ and $Y = G^y$, compute G^{xy}
- DDH problem: distinguish (G^x, G^y, G^{xy}) and (G^x, G^y, G^z)
- usual situations in cryptographic groups:
 - CDH and DDH are both (presumably) hard → e.g. prime order subgroup of Z^{*}_p
 - ② CDH is (presumably) hard and DDH is universally easy → pairing groups

イロト 不得 トイラト イラト 一日

Introduction: CDH versus DDH

- group \mathbb{G} , element $G \in \mathbb{G}$ of large order
- CDH problem: given $X = G^x$ and $Y = G^y$, compute G^{xy}
- DDH problem: distinguish (G^x, G^y, G^{xy}) and (G^x, G^y, G^z)

usual situations in cryptographic groups:

- CDH and DDH are both (presumably) hard → e.g. prime order subgroup of Z^{*}_p
- ② CDH is (presumably) hard and DDH is universally easy → pairing groups

PKC 2013 2 / 27

イロト 不得 トイヨト イヨト 二日

Introduction: CDH versus DDH

- group \mathbb{G} , element $G \in \mathbb{G}$ of large order
- CDH problem: given $X = G^x$ and $Y = G^y$, compute G^{xy}
- DDH problem: distinguish (G^x, G^y, G^{xy}) and (G^x, G^y, G^z)
- usual situations in cryptographic groups:
 - CDH and DDH are both (presumably) hard → e.g. prime order subgroup of Z^{*}_p
 - ② CDH is (presumably) hard and DDH is universally easy → pairing groups

イロト イポト イヨト イヨト 二日

Trapdoor DDH groups (TDDH groups):

- lies somewhere between cases 1 and 2: \rightarrow CDH is hard, while DDH is hard unless one has some trapdoor τ
- introduced by Dent and Galbraith [DG06]
- very few constructions (hidden pairing construction by [DG06])
- very few applications:
 - simple identification scheme [DG06]
 - statistically hiding sets [PX09]

< □ > < 同 > < 回 > < 回 > < 回 >

Trapdoor DDH groups (TDDH groups):

- lies somewhere between cases 1 and 2:
 - \rightarrow CDH is hard, while DDH is hard unless one has some trapdoor τ

• introduced by Dent and Galbraith [DG06]

- very few constructions (hidden pairing construction by [DG06])
- very few applications:
 - simple identification scheme [DG06]
 - statistically hiding sets [PX09]

イロト イポト イヨト イヨト

Trapdoor DDH groups (TDDH groups):

- lies somewhere between cases 1 and 2:
 - \rightarrow CDH is hard, while DDH is hard unless one has some trapdoor τ
- introduced by Dent and Galbraith [DG06]
- very few constructions (hidden pairing construction by [DG06])
- very few applications:
 - simple identification scheme [DG06]
 - statistically hiding sets [PX09]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Trapdoor DDH groups (TDDH groups):

- lies somewhere between cases 1 and 2:
 - \rightarrow CDH is hard, while DDH is hard unless one has some trapdoor τ
- introduced by Dent and Galbraith [DG06]
- very few constructions (hidden pairing construction by [DG06])
- very few applications:
 - simple identification scheme [DG06]
 - statistically hiding sets [PX09]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Our contributions:

- we slightly refine the original definition of trapdoor DDH groups by [DG06]
- we introduce static trapdoor DDH groups
- we give new constructions of trapdoor DDH and static trapdoor DDH groups based on standard assumptions
- we show that (static) trapdoor DDH groups give very simple constructions of convertible undeniable signature schemes

< □ > < 同 > < 回 > < 回 > < 回 >

Our contributions:

- we slightly refine the original definition of trapdoor DDH groups by [DG06]
- we introduce static trapdoor DDH groups
- we give new constructions of trapdoor DDH and static trapdoor DDH groups based on standard assumptions
- we show that (static) trapdoor DDH groups give very simple constructions of convertible undeniable signature schemes

(4) (日本)

Our contributions:

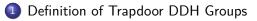
- we slightly refine the original definition of trapdoor DDH groups by [DG06]
- we introduce static trapdoor DDH groups
- we give new constructions of trapdoor DDH and static trapdoor DDH groups based on standard assumptions
- we show that (static) trapdoor DDH groups give very simple constructions of convertible undeniable signature schemes

Our contributions:

- we slightly refine the original definition of trapdoor DDH groups by [DG06]
- we introduce static trapdoor DDH groups
- we give new constructions of trapdoor DDH and static trapdoor DDH groups based on standard assumptions
- we show that (static) trapdoor DDH groups give very simple constructions of convertible undeniable signature schemes

A 回 > A 回 > A 回 >

Outline



New Constructions of TDDH and Static TDDH Groups
A TDDH group based on composite residuosity
A static TDDH group based on RSA
A static TDDH group based on factoring

- A static TDDH group based on factoring
- Application to Convertible Undeniable Signatures

A B A A B A

Outline

Definition of Trapdoor DDH Groups

New Constructions of TDDH and Static TDDH Groups
A TDDH group based on composite residuosity
A static TDDH group based on RSA

A static TDDH group based on factoring

Application to Convertible Undeniable Signatures

< □ > < 同 > < 回 > < 回 > < 回 >

Trapdoor DDH group

$(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k)$ is a trapdoor DDH group if:

- (1) the DDH problem is hard for (\mathbb{G},G) without the trapdoor au
- ② the CDH problem is hard even with the trapdoor au
- (a) there is a distinguishing algorithm $SOLVE(X, Y, Z, \tau)$ which:
 - always accepts when (X, Y, Z) is a DDH tuple (completeness)
 - accepts with negligible probability for any adversarially generated Z ← A(X, Y) (soundness)

When SOLVE always rejects on input a non-DDH tuple (X, Y, Z), we say that the TDDH group has perfect soundness.

イロト 不得 トイラト イラト 一日

Trapdoor DDH group

- $(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k)$ is a trapdoor DDH group if:
 - $\textbf{0} \hspace{0.1 cm} \text{the DDH problem is hard for } (\mathbb{G}, \textit{G}) \hspace{0.1 cm} \text{without the trapdoor } \tau$
 - ② the CDH problem is hard even with the trapdoor au
 - (a) there is a distinguishing algorithm $SOLVE(X, Y, Z, \tau)$ which:
 - always accepts when (X, Y, Z) is a DDH tuple (completeness)
 - accepts with negligible probability for any adversarially generated $Z \leftarrow \mathcal{A}(X, Y)$ (soundness)

When SOLVE always rejects on input a non-DDH tuple (X, Y, Z), we say that the TDDH group has perfect soundness.

イロト 不得 トイラト イラト 一日

Trapdoor DDH group

- $(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k)$ is a trapdoor DDH group if:
 - **(**) the DDH problem is hard for (\mathbb{G}, G) without the trapdoor au
 - **②** the CDH problem is hard even with the trapdoor τ
 - (3) there is a distinguishing algorithm $SOLVE(X, Y, Z, \tau)$ which:
 - always accepts when (X, Y, Z) is a DDH tuple (completeness)
 - accepts with negligible probability for any adversarially generated Z ← A(X, Y) (soundness)

When SOLVE always rejects on input a non-DDH tuple (X, Y, Z), we say that the TDDH group has perfect soundness.

イロト 不得 トイヨト イヨト 二日

Trapdoor DDH group

- $(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k)$ is a trapdoor DDH group if:
 - **(**) the DDH problem is hard for (\mathbb{G}, G) without the trapdoor au
 - **②** the CDH problem is hard even with the trapdoor τ
 - there is a distinguishing algorithm $SOLVE(X, Y, Z, \tau)$ which:
 - always accepts when (X, Y, Z) is a DDH tuple (completeness)
 - accepts with negligible probability for any adversarially generated $Z \leftarrow \mathcal{A}(X, Y)$ (soundness)

When SOLVE always rejects on input a non-DDH tuple (X, Y, Z), we say that the TDDH group has perfect soundness.

イロト 不得 トイヨト イヨト 二日

Trapdoor DDH group

 $(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k)$ is a trapdoor DDH group if:

- () the DDH problem is hard for (\mathbb{G}, G) without the trapdoor au
- **②** the CDH problem is hard even with the trapdoor τ
- Solve (X, Y, Z, τ) which:
 - always accepts when (X, Y, Z) is a DDH tuple (completeness)
 - accepts with negligible probability for any adversarially generated $Z \leftarrow \mathcal{A}(X, Y)$ (soundness)

When SOLVE always rejects on input a non-DDH tuple (X, Y, Z), we say that the TDDH group has perfect soundness.

イロト 不得下 イヨト イヨト 二日

Original proposals by Dent-Galbraith [DG06]

Dent and Galbraith originally proposed two TDDH group constructions:

disguised elliptic curve [Frey98]
 → broken by Morales [Mor08]

a hidden pairing:

- uses an elliptic curve E over the ring \mathbb{Z}_N , $N = p_1 p_2$
- point $G \in E(\mathbb{Z}_N)$ of order r_1r_2 where $r_1|(p_1+1)$ and $r_2|(p_2+1)$
- the trapdoor is $\tau = (p_1, p_2, r_1, r_2)$
- by the CRT, (X, Y, Z) ∈ ⟨G⟩³ is a DDH tuple iff it reduces to a DDH tuple in E(𝔽_{p1}) and E(𝔽_{p2})
 - ightarrow solve the DDH problem in $E(\mathbb{F}_{p_1})$ and $E(\mathbb{F}_{p_2})$ using a pairing
- problem: no obvious way to hash into $\langle G \rangle$

イロト 不得 トイヨト イヨト 二日

Original proposals by Dent-Galbraith [DG06]

Dent and Galbraith originally proposed two TDDH group constructions:

disguised elliptic curve [Frey98]
 → broken by Morales [Mor08]

a hidden pairing:

- uses an elliptic curve E over the ring \mathbb{Z}_N , $N = p_1 p_2$
- point $G \in E(\mathbb{Z}_N)$ of order r_1r_2 where $r_1|(p_1+1)$ and $r_2|(p_2+1)$
- the trapdoor is $au = (p_1, p_2, r_1, r_2)$
- by the CRT, (X, Y, Z) ∈ ⟨G⟩³ is a DDH tuple iff it reduces to a DDH tuple in E(𝔽_{p1}) and E(𝔽_{p2})
 - ightarrow solve the DDH problem in $E(\mathbb{F}_{
 ho_1})$ and $E(\mathbb{F}_{
 ho_2})$ using a pairing
- problem: no obvious way to hash into $\langle G \rangle$

イロト 不得下 イヨト イヨト 二日

Original proposals by Dent-Galbraith [DG06]

Dent and Galbraith originally proposed two TDDH group constructions:

- disguised elliptic curve [Frey98]
 → broken by Morales [Mor08]
- a hidden pairing:
 - uses an elliptic curve E over the ring \mathbb{Z}_N , $N = p_1 p_2$
 - point $G \in E(\mathbb{Z}_N)$ of order r_1r_2 where $r_1|(p_1+1)$ and $r_2|(p_2+1)$
 - the trapdoor is $au = (p_1, p_2, r_1, r_2)$
 - by the CRT, (X, Y, Z) ∈ ⟨G⟩³ is a DDH tuple iff it reduces to a DDH tuple in E(𝔽_{p1}) and E(𝔽_{p2})
 - ightarrow solve the DDH problem in $E(\mathbb{F}_{p_1})$ and $E(\mathbb{F}_{p_2})$ using a pairing
 - problem: no obvious way to hash into $\langle G \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Static TDDH groups

Static TDDH group = more restricted variant of TDDH group \rightarrow the trapdoor τ_x is dedicated to some fixed element X

Static trapdoor DDH group

 $(\mathbb{G}, G, \tau) \leftarrow \operatorname{GPGEN}(1^k)$ is a static TDDH group if there is a randomized algorithm $(X, \tau_x) \leftarrow \operatorname{SAMPLE}(\tau)$ taking the master trapdoor τ as input such that:

- () the DDH problem is hard for (\mathbb{G},G) without the trapdoor au
- **2** the static CDH problem for (G, X) is hard even given τ_x
- there is a distinguishing algorithm $SOLVE(X, Y, Z, \tau_x)$ which distinguishes DDH tuples from non-DDH tuples

Remark: in a static trapdoor DDH group, the Strong Diffie-Hellman problem (*i.e.* solving the CDH problem given a static DDH oracle) is hard

イロト 不得 トイラト イラト 一日

Outline

New Constructions of TDDH and Static TDDH Groups
A TDDH group based on composite residuosity
A static TDDH group based on RSA
A static TDDH group based on factoring

Application to Convertible Undeniable Signatures

(3)

Outline

New Constructions of TDDH and Static TDDH Groups
 A TDDH group based on composite residuosity

- A static TDDH group based on RSA
- A static TDDH group based on factoring

Application to Convertible Undeniable Signatures

(4) (5) (4) (5)

- N = pq, with p, q safe primes
- $\mathbb{G} = \mathbb{QR}_{N^2}$ is the group of quadratic residues mod N^2
- G generator of \mathbb{G}

Partial discrete log (Paillier [Pai99])

Given the factorization of N, it is possible to compute efficiently the partial discrete log defined as:

$$\operatorname{PDlog}_G(X) := \operatorname{Dlog}_G(X) \mod N$$
 .

< □ > < □ > < □ > < □ > < □ > < □ >

- N = pq, with p, q safe primes
- $\mathbb{G} = \mathbb{QR}_{N^2}$ is the group of quadratic residues mod N^2
- G generator of \mathbb{G}

Partial discrete log (Paillier [Pai99])

Given the factorization of N, it is possible to compute efficiently the partial discrete log defined as:

$$\operatorname{PDlog}_G(X) := \operatorname{Dlog}_G(X) \mod N$$
 .

 $GPGEN(1^k)$:

- N = pq, with p, q safe primes
- $\mathbb{G} = \mathbb{QR}_{N^2}$ is the group of quadratic residues mod N^2
- G generator of \mathbb{G}
- trapdoor au = (p, q)

Solving the DDH problem in (\mathbb{G}, G) using trapdoor $\tau = (p, q)$:

- input $(X, Y, Z) \in \mathbb{G}^3$
- compute $x' = \operatorname{PDlog}_G(X)$, $y' = \operatorname{PDlog}_G(Y)$, $z' = \operatorname{PDlog}_G(Z)$
- check whether $x'y' = z' \mod N$

Described as a "DH gap group" by Bresson et al. [BCP08]

イロト 不得下 イヨト イヨト 二日

 $GPGEN(1^k)$:

- N = pq, with p, q safe primes
- $\mathbb{G}=\mathbb{Q}\mathbb{R}_{N^2}$ is the group of quadratic residues mod N^2
- G generator of \mathbb{G}
- trapdoor au = (p,q)

Solving the DDH problem in (\mathbb{G}, G) using trapdoor $\tau = (p, q)$:

- input $(X, Y, Z) \in \mathbb{G}^3$
- compute $x' = \operatorname{PDlog}_G(X)$, $y' = \operatorname{PDlog}_G(Y)$, $z' = \operatorname{PDlog}_G(Z)$
- check whether $x'y' = z' \mod N$

Described as a "DH gap group" by Bresson et al. [BCP08]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 $GPGEN(1^k)$:

- N = pq, with p, q safe primes
- $\mathbb{G}=\mathbb{Q}\mathbb{R}_{N^2}$ is the group of quadratic residues mod N^2
- G generator of \mathbb{G}
- trapdoor au = (p,q)

Solving the DDH problem in (\mathbb{G}, G) using trapdoor $\tau = (p, q)$:

- input $(X, Y, Z) \in \mathbb{G}^3$
- compute x' = PDlog_G(X), y' = PDlog_G(Y), z' = PDlog_G(Z)
- check whether $x'y' = z' \mod N$

Described as a "DH gap group" by Bresson et al. [BCP08]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• The soundness property relies on the following problem:

Partial CDH problem

Given N and G generator of $\mathbb{G} = \mathbb{QR}_{N^2}$, and X, $Y \leftarrow_{\$} \mathbb{G}$, output Z such that $\mathrm{PDlog}_G(Z) = \mathrm{PDlog}_G(X) \times \mathrm{PDlog}_G(Y) \mod N$.

- Issue: this TDDH group does not have perfect soundness The SOLVE algorithm accepts even for a non-DDH tuple (X, Y, Z) such that $PDlog_G(Z) = PDlog_G(X) \times PDlog_G(Y) \mod N$.
- Given a DDH tuple (X, Y, Z), anyone can compute Z' = ZU^N, and (X, Y, Z') is a non-DDH tuple which fools the SOLVE algorithm
 → problem for some applications (esp. undeniable signatures)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The soundness property relies on the following problem:

Partial CDH problem

Given N and G generator of $\mathbb{G} = \mathbb{QR}_{N^2}$, and $X, Y \leftarrow_{\$} \mathbb{G}$, output Z such that $\mathrm{PDlog}_G(Z) = \mathrm{PDlog}_G(X) \times \mathrm{PDlog}_G(Y) \mod N$.

- Issue: this TDDH group does not have perfect soundness The SOLVE algorithm accepts even for a non-DDH tuple (X, Y, Z) such that $PDlog_G(Z) = PDlog_G(X) \times PDlog_G(Y) \mod N$.
- Given a DDH tuple (X, Y, Z), anyone can compute Z' = ZU^N, and (X, Y, Z') is a non-DDH tuple which fools the SOLVE algorithm
 → problem for some applications (esp. undeniable signatures)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The soundness property relies on the following problem:

Partial CDH problem

Given N and G generator of $\mathbb{G} = \mathbb{QR}_{N^2}$, and $X, Y \leftarrow_{\$} \mathbb{G}$, output Z such that $\mathrm{PDlog}_G(Z) = \mathrm{PDlog}_G(X) \times \mathrm{PDlog}_G(Y) \mod N$.

- Issue: this TDDH group does not have perfect soundness The SOLVE algorithm accepts even for a non-DDH tuple (X, Y, Z) such that $PDlog_G(Z) = PDlog_G(X) \times PDlog_G(Y) \mod N$.
- Given a DDH tuple (X, Y, Z), anyone can compute $Z' = ZU^N$, and (X, Y, Z') is a non-DDH tuple which fools the SOLVE algorithm \rightarrow problem for some applications (esp. undeniable signatures)

Yannick Seurin (ANSSI)

◆□ > ◆□ > ◆豆 > ◆豆 > □ □

Outline

New Constructions of TDDH and Static TDDH Groups
A TDDH group based on composite residuosity
A static TDDH group based on RSA

• A static TDDH group based on factoring

Application to Convertible Undeniable Signatures

A static TDDH group based on RSA

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N$ is the subgroup of \mathbb{Z}_N^* of elements with Jacobi symbol 1
 - G generator of \mathbb{G}
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N|\}$, let $X = G^x$
 - the trapdoor is $\tau_x = 1/x \mod \operatorname{ord}(\mathbb{J}_N)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z^{τ_x} = Y (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the RSA assumption, this is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard in \mathbb{J}_N under the RSA assumption

イロト 不得 トイラト イラト 一日

A static TDDH group based on RSA

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N$ is the subgroup of \mathbb{Z}_N^* of elements with Jacobi symbol 1
 - G generator of G
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N|\}$, let $X = G^x$
 - the trapdoor is $au_x = 1/x \mod \operatorname{ord}(\mathbb{J}_N)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z^{τ_x} = Y (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the RSA assumption, this is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard in \mathbb{J}_N under the RSA assumption

イロト 不得 トイラト イラト 一日

A static TDDH group based on RSA

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N$ is the subgroup of \mathbb{Z}_N^* of elements with Jacobi symbol 1
 - G generator of $\mathbb G$
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N|\}$, let $X = G^x$
 - the trapdoor is $au_x = 1/x \mod \operatorname{ord}(\mathbb{J}_N)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z^{τ_x} = Y (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the RSA assumption, this is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard in \mathbb{J}_N under the RSA assumption

イロト 不得 トイヨト イヨト 二日

A static TDDH group based on RSA

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N$ is the subgroup of \mathbb{Z}_N^* of elements with Jacobi symbol 1
 - G generator of G
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N|\}$, let $X = G^x$
 - the trapdoor is $au_x = 1/x \mod \operatorname{ord}(\mathbb{J}_N)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z^{τ_x} = Y (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the RSA assumption, this is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard in \mathbb{J}_N under the RSA assumption

イロト イヨト イヨト イヨト 三日

A static TDDH group based on RSA

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N$ is the subgroup of \mathbb{Z}_N^* of elements with Jacobi symbol 1
 - G generator of G
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N|\}$, let $X = G^x$
 - the trapdoor is $au_x = 1/x \mod \operatorname{ord}(\mathbb{J}_N)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z^{τ_x} = Y (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the RSA assumption, this is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard in \mathbb{J}_N under the RSA assumption

イロト イヨト イヨト イヨト 三日

Outline

New Constructions of TDDH and Static TDDH Groups • A TDDH group based on composite residuosity

- A static TDDH group based on RSA
- A static TDDH group based on factoring

Application to Convertible Undeniable Signatures

(4) (5) (4) (5)

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N^+ = \mathbb{J}_N \cap [1, (N-1)/2]$, group operation: $a * b := |a \cdot b \mod N|$ $\mathbb{J}_N^+ \simeq \mathbb{J}_N / \{+1, -1\}$ (group of signed quadratic residues [HK09])
 - $\bullet\,$ generator G of $\mathbb G$
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N^+|\}$, let $X = G^x$
 - the trapdoor is $\tau_x = 2x \pm m$ with $m = \operatorname{ord}(\mathbb{J}_N^+)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z² = Y^{τ_x} (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the factoring assumption, this group is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard for \mathbb{J}_N^+ under the factoring assumption [HK09]

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N^+ = \mathbb{J}_N \cap [1, (N-1)/2]$, group operation: $a * b := |a \cdot b \mod N|$ $\mathbb{J}_N^+ \simeq \mathbb{J}_N / \{+1, -1\}$ (group of signed quadratic residues [HK09])
 - $\bullet\,$ generator G of $\mathbb G$
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N^+|\}$, let $X = G^x$
 - the trapdoor is $\tau_x = 2x \pm m$ with $m = \operatorname{ord}(\mathbb{J}_N^+)$
- solving the DDH problem for $(X, Y, Z) \in \mathbb{G}^3$: \rightarrow check whether $Z^2 = Y^{\tau_x}$ (satisfied iff $Z = Y^x$)
- Theorem: Under the DDH assumption and the factoring assumption, this group is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard for \mathbb{J}_N^+ under the factoring assumption [HK09]

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N^+ = \mathbb{J}_N \cap [1, (N-1)/2]$, group operation: $a * b := |a \cdot b \mod N|$ $\mathbb{J}_N^+ \simeq \mathbb{J}_N / \{+1, -1\}$ (group of signed quadratic residues [HK09])
 - $\bullet\,$ generator G of $\mathbb G$
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N^+|\}$, let $X = G^x$
 - the trapdoor is $\tau_x = 2x \pm m$ with $m = \operatorname{ord}(\mathbb{J}_N^+)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z² = Y^{τ_x} (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the factoring assumption, this group is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard for \mathbb{J}_N^+ under the factoring assumption [HK09]

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N^+ = \mathbb{J}_N \cap [1, (N-1)/2]$, group operation: $a * b := |a \cdot b \mod N|$ $\mathbb{J}_N^+ \simeq \mathbb{J}_N / \{+1, -1\}$ (group of signed quadratic residues [HK09])
 - $\bullet\,$ generator G of $\mathbb G$
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N^+|\}$, let $X = G^x$
 - the trapdoor is $\tau_x = 2x \pm m$ with $m = \operatorname{ord}(\mathbb{J}_N^+)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z² = Y^{τ_x} (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the factoring assumption, this group is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard for \mathbb{J}_N^+ under the factoring assumption [HK09]

Yannick Seurin (ANSSI)

- GPGEN (1^k) :
 - N = pq, with p, q safe primes
 - $\mathbb{G} = \mathbb{J}_N^+ = \mathbb{J}_N \cap [1, (N-1)/2]$, group operation: $a * b := |a \cdot b \mod N|$ $\mathbb{J}_N^+ \simeq \mathbb{J}_N / \{+1, -1\}$ (group of signed quadratic residues [HK09])
 - $\bullet\,$ generator G of $\mathbb G$
 - master trapdoor au = (p,q)
- sampling a group element and the corresponding trapdoor:
 - draw $x \leftarrow_{\$} \{1, \ldots, |\mathbb{J}_N^+|\}$, let $X = G^x$
 - the trapdoor is $\tau_x = 2x \pm m$ with $m = \operatorname{ord}(\mathbb{J}_N^+)$
- solving the DDH problem for (X, Y, Z) ∈ G³:
 → check whether Z² = Y^{τ_x} (satisfied iff Z = Y^x)
- Theorem: Under the DDH assumption and the factoring assumption, this group is a static TDDH group with perfect soundness
- NB: implies that Strong DH is hard for \mathbb{J}_N^+ under the factoring assumption [HK09]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Hashing into groups

For both previous cases, it is possible to securely hash into the underlying group $\mathbb{G}.$

Given $H: \{0,1\}^* \to \mathbb{Z}_N$, let *a* be an integer with $\left(\frac{a}{N}\right) = -1$

• for $\mathbb{G} = \mathbb{J}_N$, define

$$H'(x) = \begin{cases} H(x) & \text{if } \left(\frac{H(x)}{N}\right) = 1\\ a \cdot H(x) \mod N & \text{if } \left(\frac{H(x)}{N}\right) = -1 \end{cases}$$

• for $\mathbb{G} = \mathbb{J}_N^+$, define

$$H'(x) = \begin{cases} |H(x)| & \text{if } \left(\frac{H(x)}{N}\right) = 1\\ |a \cdot H(x) \mod N| & \text{if } \left(\frac{H(x)}{N}\right) = -1 \end{cases}$$

Yannick Seurin (ANSSI)

Outline

New Constructions of TDDH and Static TDDH Groups
A TDDH group based on composite residuosity
A static TDDH group based on RSA

A static TDDH group based on factoring

Application to Convertible Undeniable Signatures

< □ > < □ > < □ > < □ > < □ > < □ >

Definition of a CUS scheme

 $\label{eq:constraint} \begin{array}{l} \text{Undeniable signature} = \text{signature that cannot be verified without the} \\ \text{cooperation of the signer} \end{array}$

Convertible Undeniable Signature Scheme:

- KeyGen(1^k): outputs a public/secret key pair (pk, sk) for the signer.
- USign(pk, sk, m): outputs an undeniable signature σ for message m.
- $\Pi_{con} = (\mathcal{P}_{con}, \mathcal{V}_{con})$: confirmation protocol for a valid signature σ
- $\Pi_{dis} = (\mathcal{P}_{dis}, \mathcal{V}_{dis})$: disavowal protocol for an invalid signature σ'
- UConvert(pk, sk): outputs a universal receipt ρ_u enabling to universally verify signatures created under (pk, sk).
- UVer(pk, ρ_u, m, σ): signature verification algorithm using the universal receipt ρ_u

イロト 不得 トイヨト イヨト

The Chaum-van Antwerpen scheme [CvA89]

Parameters:

- ullet a group ${\mathbb G}$ and a gen. G such that the DDH problem is hard
- a hash function $H: \{0,1\}^* \to \mathbb{G}$

CvA undeniable signature scheme

- Key generation: sk := x \leftarrow_{\\$} \{1, \ldots, |\langle G \rangle|\}, pk := X := G^{x}
- Signing a message m: compute $M = H(m) \in \mathbb{G}$, and $S = M^{\times}$
- Confirming a sig. S for m: prove that (X, H(M), S) is a DDH tuple \rightarrow Chaum-Pedersen proof of equality of DL [CP92]
- Denying a sig. S' for m: prove that (X, H(M), S') is a non-DDH tuple \rightarrow Camenish-Shoup proof of inequality of DL [CS03]

Note: using a pairing group where DDH is easy yields the Boneh-Lynn-Shacham signature scheme [BLS04]

Yannick Seurin (ANSSI)

Trapdoor DDH Groups

PKC 2013 22 / 27

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Using the CvA scheme with a (static) TDDH group gives new properties.

- \rightarrow New KeyGen: $(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k), (X, \tau_x) \leftarrow \operatorname{SAMPLE}(\tau)$
- signer public key: $pk = X = G^{x}$
- signer secret key: $sk = (x, \tau_x)$, where τ_x is the trapdoor for solving the static DDH problem for X

The signer now can use the trapdoor τ_x as follows:

- delegated verification: disclose the trapdoor τ_x to the delegated verifier DV
 - \rightarrow DV can confirm/disavow signatures using witness $\tau_{\rm x}$
- universal convertibility: simply make the trapdoor τ_x public \rightarrow anyone can verify signatures *S* using SOLVE(*X*, *H*(*m*), *S*, τ_x)

Caveat: requires perfect soundness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using the CvA scheme with a (static) TDDH group gives new properties.

- \rightarrow New KeyGen: $(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k)$, $(X, \tau_x) \leftarrow \operatorname{SAMPLE}(\tau)$
- signer public key: $pk = X = G^{\times}$
- signer secret key: $sk = (x, \tau_x)$, where τ_x is the trapdoor for solving the static DDH problem for X

The signer now can use the trapdoor τ_x as follows:

- delegated verification: disclose the trapdoor τ_x to the delegated verifier DV
 - \rightarrow DV can confirm/disavow signatures using witness $\tau_{\rm x}$
- universal convertibility: simply make the trapdoor τ_x public \rightarrow anyone can verify signatures *S* using SOLVE(*X*, *H*(*m*), *S*, τ_x)

Caveat: requires perfect soundness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using the CvA scheme with a (static) TDDH group gives new properties.

- \rightarrow New KeyGen: $(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k)$, $(X, \tau_x) \leftarrow \operatorname{SAMPLE}(\tau)$
- signer public key: $pk = X = G^{\times}$
- signer secret key: $sk = (x, \tau_x)$, where τ_x is the trapdoor for solving the static DDH problem for X

The signer now can use the trapdoor τ_x as follows:

- delegated verification: disclose the trapdoor τ_x to the delegated verifier DV
 - \rightarrow DV can confirm/disavow signatures using witness $\tau_{\rm x}$
- universal convertibility: simply make the trapdoor τ_x public
 - \rightarrow anyone can verify signatures S using SOLVE $(X, H(m), S, \tau_x)$

Caveat: requires perfect soundness

Using the CvA scheme with a (static) TDDH group gives new properties.

- \rightarrow New KeyGen: $(\mathbb{G}, \mathcal{G}, \tau) \leftarrow \operatorname{GPGEN}(1^k)$, $(X, \tau_x) \leftarrow \operatorname{SAMPLE}(\tau)$
- signer public key: $pk = X = G^{\times}$
- signer secret key: $sk = (x, \tau_x)$, where τ_x is the trapdoor for solving the static DDH problem for X

The signer now can use the trapdoor τ_x as follows:

- delegated verification: disclose the trapdoor τ_x to the delegated verifier DV
 - \rightarrow DV can confirm/disavow signatures using witness $\tau_{\rm x}$
- universal convertibility: simply make the trapdoor τ_x public
 - \rightarrow anyone can verify signatures S using SOLVE $(X, H(m), S, \tau_x)$

Caveat: requires perfect soundness

New KeyGen:

- signer public key $pk = X = G^x$
- signer secret key $sk = (x, \tau_x)$, where τ_x is the trapdoor for solving the static DDH problem for X

Security properties:

- unforgeability under CMA attacks:
 - \rightarrow relies on hardness of the CDH problem (even given τ_x)
- invisibility under CMA attacks (impossibility to distinguish a valid signature from an random one):
 - \rightarrow relies on hardness of the DDH problem (without τ_x)

イロト 不得下 イヨト イヨト 二日

The Chaum-van Antwerpen scheme can be instantiated with the two proposed static TDDH groups:

- RSA-based static TDDH group \mathbb{J}_N : \rightarrow scheme similar to the one by Gennaro, Rabin, and Krawczyk [GRK00]
- factoring-based static TDDH group \mathbb{J}_N^+ :
 - \rightarrow scheme similar to the one by Galbraith and Mao [GM03]

Key generation must be done with care. One needs to certify that:

- \mathbb{Z}_N^* has no small order subgroup
- G is a generator of the specified group

 \rightarrow demand that the signer proves in ZK that N is a product of safe primes

(日)

The Chaum-van Antwerpen scheme can be instantiated with the two proposed static TDDH groups:

• RSA-based static TDDH group \mathbb{J}_N :

 \rightarrow scheme similar to the one by Gennaro, Rabin, and Krawczyk [GRK00]

- factoring-based static TDDH group \mathbb{J}_N^+ :
 - \rightarrow scheme similar to the one by Galbraith and Mao [GM03]

Key generation must be done with care. One needs to certify that:

- \mathbb{Z}_N^* has no small order subgroup
- *G* is a generator of the specified group

ightarrow demand that the signer proves in ZK that N is a product of safe primes

(日)

The Chaum-van Antwerpen scheme can be instantiated with the two proposed static TDDH groups:

• RSA-based static TDDH group \mathbb{J}_N :

 \rightarrow scheme similar to the one by Gennaro, Rabin, and Krawczyk [GRK00]

- factoring-based static TDDH group \mathbb{J}_N^+ :
 - \rightarrow scheme similar to the one by Galbraith and Mao [GM03]

Key generation must be done with care. One needs to certify that:

- \mathbb{Z}_N^* has no small order subgroup
- G is a generator of the specified group

 \rightarrow demand that the signer proves in ZK that N is a product of safe primes

The Chaum-van Antwerpen scheme can be instantiated with the two proposed static TDDH groups:

• RSA-based static TDDH group \mathbb{J}_N :

 \rightarrow scheme similar to the one by Gennaro, Rabin, and Krawczyk [GRK00]

- factoring-based static TDDH group \mathbb{J}_N^+ :
 - \rightarrow scheme similar to the one by Galbraith and Mao [GM03]

Key generation must be done with care. One needs to certify that:

- \mathbb{Z}_N^* has no small order subgroup
- G is a generator of the specified group

 \rightarrow demand that the signer proves in ZK that N is a product of safe primes

Conclusion

Open problems:

- build a TDDH group with perfect soundness and a way to securely hash into it
- build a TDDH group with prime order
- other applications of TDDH groups?

 → suggested by a PKC reviewer:
 generic construction of extractable hash proof system [Wee10]
 ⇒ CCA-secure KEM

• • = • • = •

Thanks

Thanks for your attention! Comments or questions?

Damn! Where's my wallet?

Yannick Seurin (ANSSI)

Trapdoor DDH Groups

PKC 2013 27 / 27

(日) (四) (日) (日) (日)