On the Lossiness of the Rabin Trapdoor Function

Yannick Seurin

ANSSI, France

March 27, 2014 — PKC 2014

Y. Seurin (ANSSI) [Lossiness of Rabin TDF](#page-55-0) PKC 2014 1 / 28

4 0 8

э

 Ω

지금 되지 못

Summary of results

- We show that the Rabin Trapdoor Function (modular squaring) is a lossy trapdoor function when adequately restricting its domain, under an extension of the Φ -Hiding assumption for $e = 2$ that we name the 2-Φ*/*4-Hiding assumption
- We apply this result to the security of Rabin Full Domain Hash signatures, and show that deterministic variants of Rabin-FDH have a tight reduction from the 2-Φ*/*4-Hiding assumption (tight reductions were previously only known for probabilistic variants)
- By extending a previous "meta-reduction" result by Coron & Kakvi-Kiltz, we show that these deterministic variants of Rabin-FDH are unlikely to have a tight black-box reduction from the Factoring assumption

 Ω

K ロ ト K 何 ト K ヨ ト K ヨ ト

Summary of results

- We show that the Rabin Trapdoor Function (modular squaring) is a lossy trapdoor function when adequately restricting its domain, under an extension of the Φ -Hiding assumption for $e = 2$ that we name the 2-Φ*/*4-Hiding assumption
- We apply this result to the security of Rabin Full Domain Hash signatures, and show that deterministic variants of Rabin-FDH have a tight reduction from the 2-Φ*/*4-Hiding assumption (tight reductions were previously only known for probabilistic variants)
- By extending a previous "meta-reduction" result by Coron & Kakvi-Kiltz, we show that these deterministic variants of Rabin-FDH are unlikely to have a tight black-box reduction from the Factoring assumption

 QQ

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Summary of results

- We show that the Rabin Trapdoor Function (modular squaring) is a lossy trapdoor function when adequately restricting its domain, under an extension of the Φ -Hiding assumption for $e = 2$ that we name the 2-Φ*/*4-Hiding assumption
- We apply this result to the security of Rabin Full Domain Hash signatures, and show that deterministic variants of Rabin-FDH have a tight reduction from the 2-Φ*/*4-Hiding assumption (tight reductions were previously only known for probabilistic variants)
- By extending a previous "meta-reduction" result by Coron & Kakvi-Kiltz, we show that these deterministic variants of Rabin-FDH are unlikely to have a tight black-box reduction from the Factoring assumption

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Outline

1 [Lossiness of the Rabin Trapdoor Function](#page-5-0)

2 [Application to Rabin-Williams-FDH Signatures](#page-27-0)

3 [Extending the Coron-Kakvi-Kiltz Meta-Reduction Result](#page-44-0)

 Ω

 $A \Box B$ A

Outline

1 [Lossiness of the Rabin Trapdoor Function](#page-5-0)

2 [Application to Rabin-Williams-FDH Signatures](#page-27-0)

Y. Seurin (ANSSI) [Lossiness of Rabin TDF](#page-0-0) PKC 2014 4 / 28

 QQ

 $A \Box B$ A

- introduced by Peikert and Waters [\[PW08\]](#page-55-1)
- have found a wide range of applications (black-box construction of IND-CCA2 PKE, etc.)

Reminder: (classical) Trapdoor Function (TDF)

A Trapdoor Function (TDF) consists of

a generation procedure $(f, \texttt{td}) \leftarrow \mathit{InjGen}(1^k)$ such that f is injective, easy to compute, but hard to invert without the trapdoor td.

- introduced by Peikert and Waters [\[PW08\]](#page-55-1)
- have found a wide range of applications (black-box construction of IND-CCA2 PKE, etc.)

Reminder: (classical) Trapdoor Function (TDF)

- A Trapdoor Function (TDF) consists of
	- a generation procedure $(f, \texttt{td}) \leftarrow \mathit{InjGen}(1^k)$ such that f is injective, easy to compute, but hard to invert without the trapdoor td.

 $(f, \texttt{td}) \leftarrow \textsf{\textit{InjGen}}(1^k)$ $\hspace{0.1 cm} \simeq \hspace{0.1 cm}$ indist. $\hspace{0.1 cm} \simeq \hspace{0.1 cm} \hspace{0.1 cm} \hspace{0.1 cm} \hspace{0.1 cm} \hspace{0.1 cm} \in \hspace{0.1 cm} \textit{LossyGen}(1^k)$

Definition: LTDF

- A Lossy Trapdoor Function (LTDF) consists of
	- \bullet an (injective) generation procedure *InjGen* as for a classical TDF
	- a lossy generation procedure $f \leftarrow LossyGen(1^k)$ such that f has range smaller than domain by a factor ℓ .

 Ω

イロト イ押ト イヨト イヨ

 $(f, \texttt{td}) \leftarrow \textit{InjGen}(1^k) \;\; \simeq \;\text{indist.} \; \simeq \;\; \;\; f \leftarrow \textit{LossyGen}(1^k)$

Security requirement:

Lossy and injective functions must be computationally hard to distinguish:

$$
|\Pr[(f, \text{td}) \leftarrow \text{InjGen}(1^k) : \mathcal{D}(f) = 1] \\ - \Pr[f \leftarrow \text{LossyGen}(1^k) : \mathcal{D}(f) = 1]| = \text{neg1}(k)
$$

 200

 $\leftarrow \equiv$ \rightarrow

Certified TDF

Definition (Certified TDF)

A TDF $(f, \texttt{td}) \leftarrow \mathit{InjGen}(1^k)$ is said to be certified if there exists a polynomial-time algorithm which tells whether f (possibly adversarially generated) is injective or not

A certified TDF is "somehow" the opposite of a lossy TDF:

TDF is certified \implies TDF cannot be lossy

 200

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

Certified TDF

Definition (Certified TDF)

A TDF $(f, \texttt{td}) \leftarrow \mathit{InjGen}(1^k)$ is said to be certified if there exists a polynomial-time algorithm which tells whether f (possibly adversarially generated) is injective or not

A certified TDF is "somehow" the opposite of a lossy TDF:

TDF is certified \implies TDF cannot be lossy

つへへ

化重新润滑脂

The RSA example

Injective RSA trapdoor function

- pick $N = pq$, with p, q distinct primes
- pick prime $e \geq 3$ with gcd($e, \phi(N)$) = 1
- compute $d=\textup{e}^{-1}$ mod $\phi(\textup{\textsf{N}})$
- return (N,e) defining $f:x\mapsto x^e$ mod N and $\mathtt{td}=d$

 \Rightarrow f is injective over \mathbb{Z}_N^*

Lossy RSA function

- **•** pick $N = pq$ with p, q distinct primes
- pick prime $e > 3$ such that *e* divides $\phi(N)$
- return (N, e) defining $f : x \mapsto x^e$ mod N

$$
\Rightarrow f \text{ is (at least) e-to-1 over } \mathbb{Z}_N^*
$$

 QQ

イロト イ部 トイヨ トイヨト

• if e prime and $e > N$, then e must be co-prime with $\phi(N)$ ⇒ certified

- if $e | \phi(N)$, $N^{\frac{1}{4}} < e < N$, Coppersmith alg. allows to factorize N ⇒ certified
- for $e < N^{\frac{1}{4}}$, it is assumed hard to tell, given (N,e) , whether $gcd(e, \phi(N)) = 1$ or $e | \phi(N)$ (Φ -Hiding assumption [\[CMS99\]](#page-53-0)) ⇒ lossy

 QQQ

지수는 지금 아이를 지나가 되었다.

• if e prime and $e > N$, then e must be co-prime with $\phi(N)$ ⇒ certified

- if $e | \phi(N)$, $N^{\frac{1}{4}} < e < N$, Coppersmith alg. allows to factorize N ⇒ certified
- for $e < N^{\frac{1}{4}}$, it is assumed hard to tell, given (N,e) , whether $gcd(e, \phi(N)) = 1$ or $e | \phi(N)$ (Φ -Hiding assumption [\[CMS99\]](#page-53-0)) ⇒ lossy

 QQQ

K ロ > K dj > K 글 > K 글 > H 글

• if e prime and $e > N$, then e must be co-prime with $\phi(N)$ ⇒ certified

- if e|*φ*(N), N 1 ⁴ *<* e *<* N, Coppersmith alg. allows to factorize N ⇒ certified
- for $e < N^{\frac{1}{4}}$, it is assumed hard to tell, given (N,e) , whether $gcd(e, \phi(N)) = 1$ or $e | \phi(N)$ (Φ -Hiding assumption [\[CMS99\]](#page-53-0)) ⇒ lossy

 QQQ

K ロ > K dj > K 글 > K 글 > H 글

- if e prime and $e > N$, then e must be co-prime with $\phi(N)$ ⇒ certified
- if e|*φ*(N), N 1 ⁴ *<* e *<* N, Coppersmith alg. allows to factorize N ⇒ certified
- for $e < N^{\frac{1}{4}}$, it is assumed hard to tell, given (N,e) , whether $gcd(e, \phi(N)) = 1$ or $e | \phi(N)$ (Φ -Hiding assumption [\[CMS99\]](#page-53-0)) ⇒ lossy

 QQQ

イロト イ母ト イヨト イヨト

- if e prime and $e > N$, then e must be co-prime with $\phi(N)$ ⇒ certified
- if e|*φ*(N), N 1 ⁴ *<* e *<* N, Coppersmith alg. allows to factorize N ⇒ certified
- for $e < N^{\frac{1}{4}}$, it is assumed hard to tell, given (N,e) , whether $gcd(e, \phi(N)) = 1$ or $e | \phi(N)$ (Φ -Hiding assumption [\[CMS99\]](#page-53-0)) ⇒ lossy

 QQQ

イロト イ押ト イヨト イヨト

Modular squaring is never injective over \mathbb{Z}_N^* , it is 4-to-1

Theorem (Blum)

If $N = pq$ is a Blum integer (i.e., $p, q = 3 \text{ mod } 4$), then any quadratic residue has a unique square root which is also a q.r., called its principal square root.

 \Rightarrow when N is Blum, modular squaring is 1-to-1 over \mathbb{OR}_N

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Modular squaring is never injective over \mathbb{Z}_N^* , it is 4-to-1

Theorem (Blum)

If $N = pq$ is a Blum integer (i.e., $p, q = 3 \text{ mod } 4$), then any quadratic residue has a unique square root which is also a q.r., called its principal square root.

 \Rightarrow when N is Blum, modular squaring is 1-to-1 over $\mathbb{QR}_{\mathbb{N}}$

 Ω

K ロト K 御 ト K 君 ト K 君 K

Problem: \mathbb{QR}_N is not (known to be) efficiently recognizable without (p, q) (Quadratic Residuosity Assumption)

Another way to make Rabin injective is to restrict the domain to

$$
(\mathbb{J}_N)^+ \stackrel{\text{def}}{=} \{1 \le x \le (N-1)/2 : \left(\frac{N}{x}\right) = 1\} = \{ |x \bmod N| : x \in \mathbb{Q}\mathbb{R}_N \}
$$

 \sqrt{N} $\left(\frac{N}{\chi}\right)$ $=$ Jacobi symbol, efficiently computable without (p,q) \Rightarrow $({\mathbb J}_N)^+$ is efficiently recognizable

Theorem

If $N = pq$ is a Blum integer (i.e., $p, q = 3 \text{ mod } 4$), then any quadratic residue has a unique square root in $(\mathbb{J}_N)^+$, called its absolute principal square root.

 \Rightarrow \Rightarrow \Rightarrow when N is Blum, modular squaring is injectiv[e o](#page-19-0)[ve](#page-21-0)r $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$

Y. Seurin (ANSSI) [Lossiness of Rabin TDF](#page-0-0) PKC 2014 11 / 28

Problem: \mathbb{QR}_N is not (known to be) efficiently recognizable without (p, q) (Quadratic Residuosity Assumption)

Another way to make Rabin injective is to restrict the domain to

$$
(\mathbb{J}_N)^+ \stackrel{\text{def}}{=} \{1 \leq x \leq (N-1)/2 : \left(\frac{N}{x}\right) = 1\} = \{|x \bmod N| : x \in \mathbb{Q}\mathbb{R}_N\}
$$

 $\frac{N}{2}$ $\left(\frac{N}{\chi}\right)$ $=$ Jacobi symbol, efficiently computable without (p,q) $\Rightarrow (\mathbb{J}_\mathcal{N})^+$ is efficiently recognizable

Theorem

If $N = pq$ is a Blum integer (i.e., $p, q = 3 \text{ mod } 4$), then any quadratic residue has a unique square root in $(\mathbb{J}_N)^+$, called its absolute principal square root.

 \Rightarrow \Rightarrow \Rightarrow when N is Blum, modular squaring is injectiv[e o](#page-20-0)[ve](#page-22-0)r $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$ $(J_{\mathcal{N}})^+$

Y. Seurin (ANSSI) [Lossiness of Rabin TDF](#page-0-0) PKC 2014 11 / 28

Problem: \mathbb{QR}_N is not (known to be) efficiently recognizable without (p, q) (Quadratic Residuosity Assumption)

Another way to make Rabin injective is to restrict the domain to

$$
(\mathbb{J}_N)^+ \stackrel{\text{def}}{=} \{1 \leq x \leq (N-1)/2 : \left(\frac{N}{x}\right) = 1\} = \{|x \bmod N| : x \in \mathbb{Q}\mathbb{R}_N\}
$$

 $\frac{N}{2}$ $\left(\frac{N}{\chi}\right)$ $=$ Jacobi symbol, efficiently computable without (p,q) $\Rightarrow (\mathbb{J}_\mathcal{N})^+$ is efficiently recognizable

Theorem

If $N = pq$ is a Blum integer (i.e., $p, q = 3 \text{ mod } 4$), then any quadratic residue has a unique square root in $(\mathbb{J}_N)^+$, called its absolute principal square root.

 \Rightarrow \Rightarrow \Rightarrow when N is Blum, modular squaring is injectiv[e o](#page-21-0)[ve](#page-23-0)r $(\mathbb{J}_N)^+_{-}$ $(\mathbb{J}_N)^+_{-}$ $(\mathbb{J}_N)^+_{-}$ $(\mathbb{J}_N)^+_{-}$

Making Rabin lossy

Theorem

If $N = pq$ with $p, q = 1 \text{ mod } 4$ (pseudo-Blum integer), then any $x \in \mathbb{QR}_N$ has its four square roots either:

- all in \mathbb{OR}_N
- all in $\mathbb{J}_N \setminus \mathbb{OR}_N$
- all in $\mathbb{Z}_N^* \setminus \mathbb{J}_N$

Hence when $N = pq$ with $p, q = 1 \text{ mod } 4$, modular squaring is

- \bullet 4-to-1 over \mathbb{OR}_N
- 2-to-1 over $(\mathbb{J}_N)^+$

 QQ

- 4 重 8 - 4 重 8

Making Rabin lossy

Theorem

If $N = pq$ with $p, q = 1 \text{ mod } 4$ (pseudo-Blum integer), then any $x \in \mathbb{QR}_N$ has its four square roots either:

- all in \mathbb{OR}_N
- all in $\mathbb{J}_N \setminus \mathbb{OR}_N$
- all in $\mathbb{Z}_N^* \setminus \mathbb{J}_N$

Hence when $N = pq$ with $p, q = 1 \text{ mod } 4$, modular squaring is

- \bullet 4-to-1 over $\mathbb{OR}_{\mathcal{M}}$
- 2-to-1 over $(\mathbb{J}_N)^+$

14 E K 4 E K

Injective vs. lossy Rabin

2-Φ*/*4-Hiding Assumption

Given $N = pq$ with $N = 1$ mod 4, it is hard to distinguish whether $p, q = 3 \text{ mod } 4$ (Blum) or $p, q = 1 \text{ mod } 4$ (pseudo-Blum) \Leftrightarrow distinguish whether gcd(2, $\phi(N)/4$) = 1 or 2 divides $\phi(N)/4$ \Leftrightarrow distinguish whether -1 is a quadratic residue mod N or not

2-Φ*/*4-Hiding ≤ Quadratic Residuosity ≤ Factoring

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Injective vs. lossy Rabin

2-Φ*/*4-Hiding Assumption

Given $N = pq$ with $N = 1$ mod 4, it is hard to distinguish whether $p, q = 3 \text{ mod } 4$ (Blum) or $p, q = 1 \text{ mod } 4$ (pseudo-Blum) \Leftrightarrow distinguish whether gcd(2, $\phi(N)/4$) = 1 or 2 divides $\phi(N)/4$ \Leftrightarrow distinguish whether -1 is a quadratic residue mod N or not

2-Φ*/*4-Hiding ≤ Quadratic Residuosity ≤ Factoring

Y. Seurin (ANSSI) [Lossiness of Rabin TDF](#page-0-0) PKC 2014 13 / 28

 Ω

- 4 重 8 - 4 重 8

← ロ → → ← 何 →

Outline

2 [Application to Rabin-Williams-FDH Signatures](#page-27-0)

[Extending the Coron-Kakvi-Kiltz Meta-Reduction Result](#page-44-0)

 QQ

 $A \Box B$ A

Full Domain Hash signature scheme

Let $(f, f_{\mathsf{td}}^{-1})$ be a TDF with range \mathcal{R} , and $H: \{0,1\}^* \to \mathcal{R}$ be a hash function. The FDH signature scheme based on TDF is as follows:

- key generation: private key is f_{td}^{-1} , public key is f .
- signing message *m*: compute $h = H(m)$ and $\sigma = f_{\rm td}^{-1}(h)$, return σ
- • verification of (m, σ) : check that $f(\sigma) = H(m)$

Security of FDH (EUF-CMA in the Random Oracle model)

- [\[BR93\]](#page-53-1): reduction from the one-wayness of f, loosing factor q_h
- [\[Cor00\]](#page-54-0): idem, but loosing only a factor q_s
- [\[Cor02\]](#page-54-1): loosing a factor q_s is unavoidable ("meta-reduction" result)
- \bullet [\[KK12\]](#page-54-2): previous result only holds if f is certified
- [\[KK12\]](#page-54-2): tight reduction from the lossiness of f

 \Rightarrow RSA-FDH with $e < N^{\frac{1}{4}}$ has a tight reduction from Φ-Hiding assumption [\[KK12\]](#page-54-2)

Security of FDH (EUF-CMA in the Random Oracle model)

- [\[BR93\]](#page-53-1): reduction from the one-wayness of f, loosing factor q_h
- [\[Cor00\]](#page-54-0): idem, but loosing only a factor q_s
- [\[Cor02\]](#page-54-1): loosing a factor q_s is unavoidable ("meta-reduction" result)
- \bullet [\[KK12\]](#page-54-2): previous result only holds if f is certified
- [\[KK12\]](#page-54-2): tight reduction from the lossiness of f

 \Rightarrow RSA-FDH with $e < N^{\frac{1}{4}}$ has a tight reduction from Φ-Hiding assumption [\[KK12\]](#page-54-2) イロト イ部 トイヨ トイヨト

Security of FDH (EUF-CMA in the Random Oracle model)

- [\[BR93\]](#page-53-1): reduction from the one-wayness of f, loosing factor q_h
- [\[Cor00\]](#page-54-0): idem, but loosing only a factor q_s
- [\[Cor02\]](#page-54-1): loosing a factor q_s is unavoidable ("meta-reduction" result)
- \bullet [\[KK12\]](#page-54-2): previous result only holds if f is certified
- [\[KK12\]](#page-54-2): tight reduction from the lossiness of f

 \Rightarrow RSA-FDH with $e < N^{\frac{1}{4}}$ has a tight reduction from Φ-Hiding assumption [\[KK12\]](#page-54-2) **K ロ ト K 伺 ト K ヨ ト K ヨ ト**

Security of FDH (EUF-CMA in the Random Oracle model)

- [\[BR93\]](#page-53-1): reduction from the one-wayness of f, loosing factor q_h
- [\[Cor00\]](#page-54-0): idem, but loosing only a factor q_s
- [\[Cor02\]](#page-54-1): loosing a factor q_s is unavoidable ("meta-reduction" result)
- [\[KK12\]](#page-54-2): previous result only holds if f is certified
- [\[KK12\]](#page-54-2): tight reduction from the lossiness of f

 \Rightarrow RSA-FDH with $e < N^{\frac{1}{4}}$ has a tight reduction from Φ-Hiding assumption [\[KK12\]](#page-54-2) **K ロ ト K 伺 ト K ヨ ト K ヨ ト**

Security of FDH (EUF-CMA in the Random Oracle model)

- [\[BR93\]](#page-53-1): reduction from the one-wayness of f, loosing factor q_h
- [\[Cor00\]](#page-54-0): idem, but loosing only a factor q_s
- [\[Cor02\]](#page-54-1): loosing a factor q_s is unavoidable ("meta-reduction" result)
- [\[KK12\]](#page-54-2): previous result only holds if f is certified
- [\[KK12\]](#page-54-2): tight reduction from the lossiness of f

 \Rightarrow RSA-FDH with $e < N^{\frac{1}{4}}$ has a tight reduction from Φ-Hiding assumption [\[KK12\]](#page-54-2) **K ロ ト K 伺 ト K ヨ ト K ヨ ト**

Security of FDH (EUF-CMA in the Random Oracle model)

- [\[BR93\]](#page-53-1): reduction from the one-wayness of f, loosing factor q_h
- [\[Cor00\]](#page-54-0): idem, but loosing only a factor q_s
- [\[Cor02\]](#page-54-1): loosing a factor q_s is unavoidable ("meta-reduction" result)
- [\[KK12\]](#page-54-2): previous result only holds if f is certified
- [\[KK12\]](#page-54-2): tight reduction from the lossiness of f

 \Rightarrow RSA-FDH with $e < N^{\frac{1}{4}}$ has a tight reduction from Φ-Hiding assumption [\[KK12\]](#page-54-2) イロメ イ部メ イヨメ イヨメー

Security of FDH (EUF-CMA in the Random Oracle model)

- [\[BR93\]](#page-53-1): reduction from the one-wayness of f, loosing factor q_h
- [\[Cor00\]](#page-54-0): idem, but loosing only a factor q_s
- [\[Cor02\]](#page-54-1): loosing a factor q_s is unavoidable ("meta-reduction" result)
- \bullet [\[KK12\]](#page-54-2): previous result only holds if f is certified
- [\[KK12\]](#page-54-2): tight reduction from the lossiness of f

 \Rightarrow RSA-FDH with $e < N^{\frac{1}{4}}$ has a tight reduction from Φ-Hiding assumption [\[KK12\]](#page-54-2) \rightarrow 3 \rightarrow 3 \rightarrow

Y. Seurin (ANSSI) [Lossiness of Rabin TDF](#page-0-0) PKC 2014 16 / 28

Rabin-Williams-FDH signatures

Rabin-FDH $=$ FDH with TDF $f: x \mapsto x^2$ mod N

 \Rightarrow public key is $N = pq$, signature is "some" square root of $H(m)$

- problem: range $\mathcal R$ of the TDF is \mathbb{QR}_N , not $\mathbb{Z}_N^*!$
- hashing a message yields a quadratic residue for only ∼ 1*/*4 of messages
- probabilistic fix: use a random salt, and compute $h = H(r, m)$ for r random until $h \in \mathbb{QR}_{N}$ (4 attempts on average)
- **o** deterministic fix: use a tweaked square root

Fact

If $N = pq$ with $p = 3$ mod 8 and $q = 7$ mod 8 (Williams integer), then for any $h\in\mathbb{Z}_N^*$, there is a unique $\alpha\in\{1,-1,2,-2\}$ such that $\alpha^{-1}h\in\mathbb{QR}_N$

Signature of *m*: $\sigma = (\alpha, s)$ such that (Verif.) $\alpha s^2 = H(m)$ mod N

 QQ

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Rabin-Williams-FDH signatures

Rabin-FDH $=$ FDH with TDF $f: x \mapsto x^2$ mod N

 \Rightarrow public key is $N = pq$, signature is "some" square root of $H(m)$

- problem: range $\mathcal R$ of the TDF is \mathbb{QR}_N , not $\mathbb{Z}_N^*!$
- hashing a message yields a quadratic residue for only ∼ 1*/*4 of messages
- probabilistic fix: use a random salt, and compute $h = H(r, m)$ for r random until $h \in \mathbb{QR}_{N}$ (4 attempts on average)
- o deterministic fix: use a tweaked square root

Fact

If $N = pq$ with $p = 3$ mod 8 and $q = 7$ mod 8 (Williams integer), then for any $h\in\mathbb{Z}^*_N$, there is a unique $\alpha\in\{1,-1,2,-2\}$ such that $\alpha^{-1}h\in\mathbb{QR}_N$

Signature of *m*: $\sigma = (\alpha, s)$ such that (Verif.) $\alpha s^2 = H(m)$ mod M

KOD KOD KED KED DAR

Rabin-Williams-FDH signatures: square root selection

Problem: square root selection

Given $h = H(m)$ and the tweak α , which of the 4 square roots of $\alpha^{-1}H(m)\in \mathbb{QR}_\mathcal{N}$ should be returned as the signature?

Two solutions:

- probabilistic: choose sq. root randomly ("Fixed Unstructured" [\[Ber08\]](#page-53-2)), but always return the same when signing twice! \odot stateful, or requires an additional PRF to choose pseudorandomly \odot tight reduction from Factoring [\[Ber08\]](#page-53-2)
- \bullet deterministic: use a Blum integer N, and always return
	- the principal square root $s \in \mathbb{QR}_N$ (PRW scheme)
	- the absolute principal square root $s \in (\mathbb{J}_N)^+$ (APRW scheme)
	- \odot stateless and fully deterministic scheme
	- \odot q_s -loose reduction from Factoring [\[Ber08\]](#page-53-2)

 Ω

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

Rabin-Williams-FDH signatures: square root selection

Problem: square root selection

Given $h = H(m)$ and the tweak α , which of the 4 square roots of $\alpha^{-1}H(m)\in \mathbb{QR}_\mathcal{N}$ should be returned as the signature?

Two solutions:

- probabilistic: choose sq. root randomly ("Fixed Unstructured" [\[Ber08\]](#page-53-2)), but always return the same when signing twice! \odot stateful, or requires an additional PRF to choose pseudorandomly
	- \odot tight reduction from Factoring [\[Ber08\]](#page-53-2)
- \bullet deterministic: use a Blum integer N, and always return
	- the principal square root $s \in \mathbb{QR}_N$ (PRW scheme)
	- the absolute principal square root $s \in (\mathbb{J}_N)^+$ (APRW scheme)
	- \odot stateless and fully deterministic scheme
	- \odot q_s -loose reduction from Factoring [\[Ber08\]](#page-53-2)

 QQ

K ロ > K 個 > K 경 > K 경 > X 경

Rabin-Williams-FDH signatures: square root selection

Problem: square root selection

Given $h = H(m)$ and the tweak α , which of the 4 square roots of $\alpha^{-1}H(m)\in \mathbb{QR}_\mathcal{N}$ should be returned as the signature?

Two solutions:

- probabilistic: choose sq. root randomly ("Fixed Unstructured" [\[Ber08\]](#page-53-2)), but always return the same when signing twice! \odot stateful, or requires an additional PRF to choose pseudorandomly
	- \odot tight reduction from Factoring [\[Ber08\]](#page-53-2)
- \bullet deterministic: use a Blum integer N, and always return
	- the principal square root $s \in \mathbb{QR}_{N}$ (PRW scheme)
	- the absolute principal square root $s \in (\mathbb{J}_N)^+$ (APRW scheme)
	- \odot stateless and fully deterministic scheme
	- \odot q_s -loose reduction from Factoring [\[Ber08\]](#page-53-2)

 QQ

K ロ > K 個 > K 경 > K 경 > X 경

Tight reduction for PRW and APRW signatures

Observation

The PRW and APRW schemes are exactly FDH schemes with TDF:

- modular squaring with domain \mathbb{QR}_N for PRW
- modular squaring with domain $(\mathbb{J}_{\mathsf{N}})^+$ for APRW

Tight reduction for PRW and APRW signatures

Theorem ([\[KK12\]](#page-54-2))

The TDF-FDH scheme has a tight reduction from the lossiness of TDF

Theorem

Modular squaring with domain \mathbb{QR}_{N} or $(\mathbb{J}_{N})^{+}$ is a lossy TDF under the 2-Φ*/*4-Hiding assumption

⇓

Theorem

The PRW and APRW schemes have a tight reduction from the 2-Φ*/*4-Hiding assumption

Tight reduction for PRW and APRW signatures

Theorem ([\[KK12\]](#page-54-2))

The TDF-FDH scheme has a tight reduction from the lossiness of TDF

Theorem

Modular squaring with domain \mathbb{QR}_{N} or $(\mathbb{J}_{N})^{+}$ is a lossy TDF under the 2-Φ*/*4-Hiding assumption

⇓

Theorem

The PRW and APRW schemes have a tight reduction from the 2-Φ*/*4-Hiding assumption

Outline

[Lossiness of the Rabin Trapdoor Function](#page-5-0)

2 [Application to Rabin-Williams-FDH Signatures](#page-27-0)

3 [Extending the Coron-Kakvi-Kiltz Meta-Reduction Result](#page-44-0)

 QQ

 $A \Box B$ A

What about tight reductions from Factoring?

We know that PRW and APRW signature schemes have:

- a tight reduction from the 2-Φ*/*4-Hiding assumption
- a q_s -loose reduction from the Factoring assumption

Natural question

Could there be a tight reduction for these schemes from the Factoring assumption?

What about tight reductions from Factoring?

We know that PRW and APRW signature schemes have:

- a tight reduction from the 2-Φ*/*4-Hiding assumption
- a q_s -loose reduction from the Factoring assumption

Natural question

Could there be a tight reduction for these schemes from the Factoring assumption?

つへへ

The Coron-Kakvi-Kiltz Meta-reduction

Theorem ([\[Cor02,](#page-54-1) [KK12\]](#page-54-2))

If TDF-FDH has a tight (black-box) reduction from one-wayness of TDF and if TDF is certified lossy, then there exists an algorithm (meta-reduction) breaking one-wayness of TDF with the help of a lossiness decision oracle

 $(\Rightarrow q_s$ -loose reduction is optimal assuming inverting TDF with the help of a lossiness decision oracle is hard).

∗ assuming inverting TDF with the help of a lossiness decision oracle is hard

The Coron-Kakvi-Kiltz Meta-reduction

Theorem ([\[Cor02,](#page-54-1) [KK12\]](#page-54-2) (extended))

If TDF-FDH has a tight (black-box) reduction from one-wayness of TDF and if TDF is certified lossy, then there exists an algorithm (meta-reduction) breaking one-wayness of TDF with the help of a lossiness decision oracle

 $(\Rightarrow q_{s}$ -loose reduction is optimal assuming inverting TDF with the help of a lossiness decision oracle is hard).

∗ assuming inverting TDF with the help of a lossiness decision oracle is hard

The Coron-Kakvi-Kiltz Meta-reduction

Theorem ([\[Cor02,](#page-54-1) [KK12\]](#page-54-2) (extended))

If TDF-FDH has a tight (black-box) reduction from one-wayness of TDF and if TDF is certified lossy, then there exists an algorithm (meta-reduction) breaking one-wayness of TDF with the help of a lossiness decision oracle

 $(\Rightarrow q_{s}$ -loose reduction is optimal assuming inverting TDF with the help of a lossiness decision oracle is hard).

∗ assuming inverting TDF with the help of a lossiness decision oracle is hard

Conclusion

new Lossy Trapdoor Function (modular squaring) under a plausible extension of the Φ-Hiding assumption, the 2-Φ*/*4-Hiding assumption

• completed landscape of security reductions for Rabin-FDH variants

Square root	Reduction from	Reduction from
selection method	Factoring	$2-\Phi/4$ -Hiding
(pseudo)-random	tight [Ber08]	
(absolute) principal	q_s -loose (opt.*)	tight

∗ assuming that factoring with a 2-Φ*/*4-Hiding decision oracle is hard

Conclusion

- new Lossy Trapdoor Function (modular squaring) under a plausible extension of the Φ-Hiding assumption, the 2-Φ*/*4-Hiding assumption
- completed landscape of security reductions for Rabin-FDH variants

∗ assuming that factoring with a 2-Φ*/*4-Hiding decision oracle is hard

[Thanks](#page-52-0)

Thanks for your attention! Comments or questions?

э

 QQQ

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

← ロ → → ← 何 →

References I

Daniel J. Bernstein.

Proving Tight Security for Rabin-Williams Signatures.

In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 70–87. Springer, 2008.

Mihir Bellare and Phillip Rogaway.

Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.

In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

Christian Cachin, Silvio Micali, and Markus Stadler.

Computationally Private Information Retrieval with Polylogarithmic Communication.

In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT '99, volume 1592 of Lecture Notes in Computer Science, pages 402–414. Springer, 1999.

 \equiv Ω

References II

Jean-Sébastien Coron.

On the Exact Security of Full Domain Hash.

In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 229–235. Springer, 2000.

Jean-Sébastien Coron.

Optimal Security Proofs for PSS and Other Signature Schemes.

In Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 272–287. Springer, 2002.

Saqib A. Kakvi and Eike Kiltz.

Optimal Security Proofs for Full Domain Hash, Revisited.

In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 537–553. Springer, 2012.

 Ω

イロト イ押ト イヨト イヨト

References III

Saqib A. Kakvi, Eike Kiltz, and Alexander May.

Certifying RSA.

In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 404–414. Springer, 2012.

Chris Peikert and Brent Waters.

Lossy trapdoor functions and their applications.

In Cynthia Dwork, editor, Symposium on Theory of Computing - STOC 2008, pages 187–196. ACM, 2008.

つへへ

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$