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Summary

Summary of results

We show that the Rabin Trapdoor Function (modular squaring) is a
lossy trapdoor function when adequately restricting its domain, under an
extension of the Φ-Hiding assumption for e = 2 that we name the
2-Φ/4-Hiding assumption

We apply this result to the security of Rabin Full Domain Hash
signatures, and show that deterministic variants of Rabin-FDH have a
tight reduction from the 2-Φ/4-Hiding assumption (tight reductions
were previously only known for probabilistic variants)

By extending a previous “meta-reduction” result by Coron &
Kakvi-Kiltz, we show that these deterministic variants of Rabin-FDH are
unlikely to have a tight black-box reduction from the Factoring
assumption
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Lossiness of the Rabin Trapdoor Function

Lossy Trapdoor Function (LTDF)

introduced by Peikert and Waters [PW08]
have found a wide range of applications (black-box construction of
IND-CCA2 PKE, etc.)

Reminder: (classical) Trapdoor Function (TDF)
A Trapdoor Function (TDF) consists of

a generation procedure (f , td)← InjGen(1k) such that f is injective,
easy to compute, but hard to invert without the trapdoor td.

domain D

range
R

codomain C

f

f −1
td

|D| = |C|
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Lossiness of the Rabin Trapdoor Function

Lossy Trapdoor Function (LTDF)

D

R

C

f

f −1
td

D C

R

f

(f , td)← InjGen(1k) f ← LossyGen(1k)' indist. '

Definition: LTDF
A Lossy Trapdoor Function (LTDF) consists of

an (injective) generation procedure InjGen as for a classical TDF
a lossy generation procedure f ← LossyGen(1k) such that f has range
smaller than domain by a factor `.
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Lossiness of the Rabin Trapdoor Function

Lossy Trapdoor Function (LTDF)

D

R

C

f

f −1
td

D C

R

f

(f , td)← InjGen(1k) f ← LossyGen(1k)' indist. '

Security requirement:
Lossy and injective functions must be computationally hard to distinguish:

∣∣Pr[(f , td)← InjGen(1k) : D(f ) = 1]

− Pr[f ← LossyGen(1k) : D(f ) = 1]
∣∣ = negl(k)
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Lossiness of the Rabin Trapdoor Function

Certified TDF

Definition (Certified TDF)
A TDF (f , td)← InjGen(1k) is said to be certified if there exists a
polynomial-time algorithm which tells whether f (possibly adversarially
generated) is injective or not

A certified TDF is “somehow” the opposite of a lossy TDF:

TDF is certified =⇒ TDF cannot be lossy
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Lossiness of the Rabin Trapdoor Function

The RSA example

Injective RSA trapdoor function
pick N = pq, with p, q distinct primes
pick prime e ≥ 3 with gcd(e, φ(N)) = 1
compute d = e−1 mod φ(N)

return (N, e) defining f : x 7→ x e mod N and td = d

⇒ f is injective over Z∗N

Lossy RSA function
pick N = pq with p, q distinct primes
pick prime e ≥ 3 such that e divides φ(N)

return (N, e) defining f : x 7→ x e mod N

⇒ f is (at least) e-to-1 over Z∗N

Y. Seurin (ANSSI) Lossiness of Rabin TDF PKC 2014 8 / 28



Lossiness of the Rabin Trapdoor Function

RSA: lossy or certified?

e
3 N 1

4 N

CertifiedCertified
[CMS99, KKM12]

Lossy
(Φ-Hiding)

e = 2?

if e prime and e > N, then e must be co-prime with φ(N)
⇒ certified
if e|φ(N), N 1

4 < e < N, Coppersmith alg. allows to factorize N
⇒ certified
for e < N 1

4 , it is assumed hard to tell, given (N, e), whether
gcd(e, φ(N)) = 1 or e|φ(N) (Φ-Hiding assumption [CMS99])
⇒ lossy
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Lossiness of the Rabin Trapdoor Function

What about e = 2? The Rabin TDF

Modular squaring is never injective over Z∗N , it is 4-to-1

Z∗N Z∗N

QRN

x 7→ x2 mod N

Theorem (Blum)
If N = pq is a Blum integer (i.e., p, q = 3 mod 4), then any quadratic
residue has a unique square root which is also a q.r., called its principal
square root.

⇒ when N is Blum, modular squaring is 1-to-1 over QRN

Y. Seurin (ANSSI) Lossiness of Rabin TDF PKC 2014 10 / 28



Lossiness of the Rabin Trapdoor Function

What about e = 2? The Rabin TDF

Modular squaring is never injective over Z∗N , it is 4-to-1

Z∗N Z∗N

QRN

x 7→ x2 mod N

Theorem (Blum)
If N = pq is a Blum integer (i.e., p, q = 3 mod 4), then any quadratic
residue has a unique square root which is also a q.r., called its principal
square root.

⇒ when N is Blum, modular squaring is 1-to-1 over QRN

Y. Seurin (ANSSI) Lossiness of Rabin TDF PKC 2014 10 / 28



Lossiness of the Rabin Trapdoor Function

What about e = 2? The Rabin TDF

Problem: QRN is not (known to be) efficiently recognizable without (p, q)
(Quadratic Residuosity Assumption)

Another way to make Rabin injective is to restrict the domain to

(JN)+
def
= {1 ≤ x ≤ (N − 1)/2 :

(N
x

)
= 1} = {|x mod N| : x ∈ QRN}

(
N
x

)
= Jacobi symbol, efficiently computable without (p, q)

⇒ (JN)+ is efficiently recognizable

Theorem
If N = pq is a Blum integer (i.e., p, q = 3 mod 4), then any quadratic
residue has a unique square root in (JN)+, called its absolute principal
square root.

⇒ when N is Blum, modular squaring is injective over (JN)+
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Lossiness of the Rabin Trapdoor Function

Making Rabin lossy

Theorem
If N = pq with p, q = 1 mod 4 (pseudo-Blum integer), then any x ∈ QRN
has its four square roots either:

all in QRN

all in JN \QRN

all in Z∗N \ JN

Hence when N = pq with p, q = 1 mod 4, modular squaring is
4-to-1 over QRN

2-to-1 over (JN)+

Y. Seurin (ANSSI) Lossiness of Rabin TDF PKC 2014 12 / 28



Lossiness of the Rabin Trapdoor Function

Making Rabin lossy

Theorem
If N = pq with p, q = 1 mod 4 (pseudo-Blum integer), then any x ∈ QRN
has its four square roots either:

all in QRN

all in JN \QRN

all in Z∗N \ JN

Hence when N = pq with p, q = 1 mod 4, modular squaring is
4-to-1 over QRN

2-to-1 over (JN)+

Y. Seurin (ANSSI) Lossiness of Rabin TDF PKC 2014 12 / 28



Lossiness of the Rabin Trapdoor Function

Injective vs. lossy Rabin

QRN

(JN)+
QRN

•

•

•
•

QRN

(JN)+
QRN

••• •

•
•

•
•

N = pq (p, q = 3 mod 4) N = pq (p, q = 1 mod 4)'

2-Φ/4-Hiding Assumption
Given N = pq with N = 1 mod 4, it is hard to distinguish whether
p, q = 3 mod 4 (Blum) or p, q = 1 mod 4 (pseudo-Blum)
⇔ distinguish whether gcd(2, φ(N)/4) = 1 or 2 divides φ(N)/4
⇔ distinguish whether −1 is a quadratic residue mod N or not

2-Φ/4-Hiding ≤ Quadratic Residuosity ≤ Factoring
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Application to Rabin-Williams-FDH Signatures
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Application to Rabin-Williams-FDH Signatures

FDH signatures based on an arbitrary TDF

Full Domain Hash signature scheme
Let (f , f −1

td ) be a TDF with range R, and H : {0, 1}∗ → R be a hash
function. The FDH signature scheme based on TDF is as follows:

key generation: private key is f −1
td , public key is f .

signing message m: compute h = H(m) and σ = f −1
td (h), return σ

verification of (m, σ): check that f (σ) = H(m)
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Application to Rabin-Williams-FDH Signatures

FDH signatures based on an arbitrary TDF

Security of FDH (EUF-CMA in the Random Oracle model)
[BR93]: reduction from the one-wayness of f , loosing factor qh

[Cor00]: idem, but loosing only a factor qs

[Cor02]: loosing a factor qs is unavoidable (“meta-reduction” result)
[KK12]: previous result only holds if f is certified
[KK12]: tight reduction from the lossiness of f

Reduction from Certified TDF Lossy TDF
One-wayness qs -loose (opt.) ??
Lossiness NA tight

⇒ RSA-FDH with e < N 1
4 has a tight reduction from Φ-Hiding

assumption [KK12]
Y. Seurin (ANSSI) Lossiness of Rabin TDF PKC 2014 16 / 28
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Application to Rabin-Williams-FDH Signatures

Rabin-Williams-FDH signatures

Rabin-FDH = FDH with TDF f : x 7→ x2 mod N
⇒ public key is N = pq, signature is “some” square root of H(m)

problem: range R of the TDF is QRN , not Z∗N !
hashing a message yields a quadratic residue for only ∼ 1/4 of messages
probabilistic fix: use a random salt, and compute h = H(r ,m) for r
random until h ∈ QRN (4 attempts on average)
deterministic fix: use a tweaked square root

Fact
If N = pq with p = 3 mod 8 and q = 7 mod 8 (Williams integer), then for
any h ∈ Z∗N , there is a unique α ∈ {1,−1, 2,−2} such that α−1h ∈ QRN

Signature of m: σ = (α, s) such that (Verif.) αs2 = H(m) mod N
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Application to Rabin-Williams-FDH Signatures

Rabin-Williams-FDH signatures: square root selection

Problem: square root selection
Given h = H(m) and the tweak α, which of the 4 square roots of
α−1H(m) ∈ QRN should be returned as the signature?

Two solutions:
probabilistic: choose sq. root randomly (“Fixed Unstructured” [Ber08]),
but always return the same when signing twice!
/ stateful, or requires an additional PRF to choose pseudorandomly
, tight reduction from Factoring [Ber08]
deterministic: use a Blum integer N, and always return

the principal square root s ∈ QRN (PRW scheme)
the absolute principal square root s ∈ (JN)+ (APRW scheme)

, stateless and fully deterministic scheme
/ qs -loose reduction from Factoring [Ber08]
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Application to Rabin-Williams-FDH Signatures

Tight reduction for PRW and APRW signatures

Observation
The PRW and APRW schemes are exactly FDH schemes with TDF:

modular squaring with domain QRN for PRW
modular squaring with domain (JN)+ for APRW

Y. Seurin (ANSSI) Lossiness of Rabin TDF PKC 2014 19 / 28



Application to Rabin-Williams-FDH Signatures

Tight reduction for PRW and APRW signatures

Theorem ([KK12])
The TDF-FDH scheme has a tight reduction from the lossiness of TDF

Theorem
Modular squaring with domain QRN or (JN)+ is a lossy TDF under the
2-Φ/4-Hiding assumption

⇓

Theorem
The PRW and APRW schemes have a tight reduction from the
2-Φ/4-Hiding assumption
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Extending the Coron-Kakvi-Kiltz Meta-Reduction Result

Outline

1 Lossiness of the Rabin Trapdoor Function

2 Application to Rabin-Williams-FDH Signatures

3 Extending the Coron-Kakvi-Kiltz Meta-Reduction Result
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Extending the Coron-Kakvi-Kiltz Meta-Reduction Result

What about tight reductions from Factoring?

We know that PRW and APRW signature schemes have:
a tight reduction from the 2-Φ/4-Hiding assumption
a qs -loose reduction from the Factoring assumption

Natural question
Could there be a tight reduction for these schemes from the Factoring
assumption?
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Extending the Coron-Kakvi-Kiltz Meta-Reduction Result

The Coron-Kakvi-Kiltz Meta-reduction

Theorem ([Cor02, KK12])
If TDF-FDH has a tight (black-box) reduction from one-wayness of TDF
and if TDF is certified lossy, then there exists an algorithm
(meta-reduction) breaking one-wayness of TDF with the help of a lossiness
decision oracle
(⇒ qs -loose reduction is optimal assuming inverting TDF with the help of
a lossiness decision oracle is hard).

Reduction from Certified TDF Lossy TDF
One-wayness qs -loose (opt.) ??
Lossiness NA tight

∗ assuming inverting TDF with the help of a lossiness decision oracle is
hard
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Conclusion

Conclusion

new Lossy Trapdoor Function (modular squaring) under a plausible
extension of the Φ-Hiding assumption, the 2-Φ/4-Hiding assumption

completed landscape of security reductions for Rabin-FDH variants

Square root Reduction from Reduction from
selection method Factoring 2-Φ/4-Hiding
(pseudo)-random tight [Ber08] —
(absolute) principal qs -loose (opt.∗) tight

∗ assuming that factoring with a 2-Φ/4-Hiding decision oracle is hard
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Thanks

The end. . .

Thanks for your attention!
Comments or questions?
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