Indifferentiability and Security Proofs in Idealized Models

Yannick Seurin Orange Labs yannick.seurin@orange-ftgroup.com

21 May 2010 Univ. Rennes Crypto Seminar

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

intro

- unconditional security (a.k.a. information-theoretic security): considers computationally unbounded adversaries, very inefficient schemes
- standard model: polynomially-bounded adversaries, relies on complexity assumptions, most desirable framework
- idealised models (ROM, ICM...): good guideline to design efficient schemes
- heuristic arguments and proof against specific attacks (e.g. proof that AES is immune to differential and linear cryptanalysis)
- security proofs are never absolute: they rely on an attack model and usually computational assumptions

indifferentiability

equivalence of the ROM and the ICM

doubling the domain of an ideal cipher

outline

indifferentiability

equivalence of the ROM and the ICM

doubling the domain of an ideal cipher

the random oracle model (ROM)

- modelizes a perfect hash function
- Random Oracle Model [BellareR93]: a publicly accessible oracle, returning a *n*-bit random value for each new query
- widely used in PK security proofs (OAEP, PSS...)
- uninstantiability results [CanettiGH98, Nielsen02]
- schemes provably secure in the plain standard model
 - Cramer-Shoup encryption
 - Boneh-Boyen signatures...

are often less efficient or come at the price of less standard complexity assumptions

the ideal cipher model (ICM) and the random permutation model

- ICM modelizes a perfect a block cipher [Shannon49, Winternitz84]
- Ideal Cipher Model: a pair of publicly accessible oracles E(·, ·) and E⁻¹(·, ·), such that E(K, ·) is a random permutation for each key K
- Random Permutation Model: a single random permutation oracle P and its inverse P⁻¹
- less popular than the ROM, but:
 - widely used for analyzing block cipher-based hash functions [BlackRS02, Hirose06]
 - used for the security proof of some PK schemes (encryption, Authenticated Key Exchange...)
- uninstantiability results as well [Black06]

the "classical" indistinguishability notion

- well-known Luby-Rackoff result: the Feistel scheme with 3 (resp. 4) rounds and random functions is indistinguishable from a random permutation (resp. invertible RP)
- any cryptosystem proven secure with a random permutation remains secure with the LR construction and secret random functions

- useful only in secret-key applications (e.g. PRF to PRP conversion)
- how do we generalise indistinguishability when the internal functions are **public**? (*e.g.* for block cipher-based hash functions, public-key encryption...)

indifferentiability: definition [MRH04]

let G be an ideal primitive (e.g. a random permutation), and C be a construction using another ideal primitive F which is public (e.g. the Feistel construction using a random oracle)

- C^F is said to be (q, σ, ε)-indifferentiable from G if there is a simulator S making σ queries to G and such that any D making at most q queries distinguishes (C^F, F) and (G, S^G) with advantage at most ε
- informally the answers of $\mathcal S$ must be:
 - \blacktriangleright consistent with answers the distinguisher can obtain directly from ${m G}$
 - indistinguishable from random
- ▶ the simulator cannot see the distinguisher's queries to G!

indifferentiability is the right notion

- ▶ any attacker against a cryptosystem Γ using C^F can be turned into an attacker against Γ using G by combining the attacker with the simulator
- ullet $\Rightarrow \mathcal{C}^{F}$ can replace $oldsymbol{G}$ in any cryptosystem without loss of security

outline

indifferentiability

equivalence of the ROM and the $\ensuremath{\mathsf{ICM}}$

doubling the domain of an ideal cipher

the ICM implies the ROM

- the ideal cipher model implies the random oracle model [CDMP05]
- variants of Merkle-Damgård used with an ideal cipher in Davies-Meyer mode is indifferentiable from a random oracle
- ► ⇒ the construction can replace a RO in any cryptosystem without loss of security

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

what about the other direction?

the ICM implies the ROM

- the ideal cipher model implies the random oracle model [CDMP05]
- variants of Merkle-Damgård used with an ideal cipher in Davies-Meyer mode is indifferentiable from a random oracle
- ► ⇒ the construction can replace a RO in any cryptosystem without loss of security
- what about the other direction? \rightarrow Luby-Rackoff with 6 rounds

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 X_{12}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 X_{12}

 $Y_{14} = Y_{23}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

X

Y

Z

S

T

S

S

T

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

S

T

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

S

T

▲ロト▲舂▶▲恵▶▲恵▶ 恵 のなぐ

S

T

イロト イヨト イヨト

э

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▶ for a random permutation one cannot find four I/O pairs such that $R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0$ and $S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0$ except with negl. prob.

indifferentiability for 6 rounds or more

Theorem

The Luby-Rackoff construction with 6 rounds is (q, σ, ϵ) -indifferentiable from a random permutation, with $\sigma = O(q^8)$ and $\epsilon = O(q^{16}/2^n)$.

- prepending a k-bit key to the random oracle calls yields a construction indifferentiable from an ideal cipher
- simpler proof for 10 rounds (and better bounds):

Theorem

The Luby-Rackoff construction with 10 rounds is (q, σ, ϵ) -indifferentiable from a random permutation, with $\sigma = O(q^4)$ and $\epsilon = O(q^4/2^n)$.

simulation strategy

- the simulator maintains an history for each F_i with
 - values previously answered to the distinguisher
 - values defined "by anticipation"
- ▶ when a query is not in the history, F_i(U) is defined randomly
- the simulator completes "chains" created in the history:
 - external chains (W, R, S, D)
 - centers (Z, A)

(ロ)、(型)、(E)、(E)、 E) の(()

• when W, R, S, D are such that

 $\boldsymbol{P}((W \oplus F_1(R)) || R) = S || (D \oplus F_{10}(S))$

they form an external chain

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

• when W, R, S, D are such that

 $\boldsymbol{P}((W \oplus F_1(R)) || R) = S || (D \oplus F_{10}(S))$

they form an external chain

► the simulator completes the chain, defining F₃(X), F₄(Y), F₅(Z) and F₆(A) randomly...

• when W, R, S, D are such that

 $\boldsymbol{P}((W \oplus F_1(R)) || R) = S || (D \oplus F_{10}(S))$

they form an external chain

► the simulator completes the chain, defining F₃(X), F₄(Y), F₅(Z) and F₆(A) randomly...

► ... and adapts the values of F₇(B) and F₈(C) so that

$$\Psi_{10}(L||R) = \boldsymbol{P}(L||R)$$

simulation strategy: centers

simulation strategy: centers

simulation strategy: centers

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @
▶ any two values A and Z form a *center*

- ▶ any two values A and Z form a *center*
- ▶ the simulator defines F₇(B), F₈(C), F₉(D), and F₁₀(S) randomly...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- any two values A and Z form a center
- ► the simulator defines F₇(B), F₈(C), F₉(D), and F₁₀(S) randomly...
- ... calls $P^{-1}(S || (D \oplus F_{10}(S))) = L || R...$

- any two values A and Z form a center
- ► the simulator defines F₇(B), F₈(C), F₉(D), and F₁₀(S) randomly...
- ... calls $\boldsymbol{P}^{-1}(S \| (D \oplus F_{10}(S))) = L \| R \dots$
- ... defines randomly $F_1(R)$ and $F_2(W)$...

- ▶ any two values A and Z form a *center*
- ► the simulator defines F₇(B), F₈(C), F₉(D), and F₁₀(S) randomly...
- ... calls $\boldsymbol{P}^{-1}(S \| (D \oplus F_{10}(S))) = L \| R \dots$
- ... defines randomly $F_1(R)$ and $F_2(W)$...
- ... and adapts the values of F₃(X) and
 F₄(Y) so that

 $\Psi_{10}(L||R) = \boldsymbol{P}(L||R)$

what could go wrong

exponential running-time

- completion of external chains creates new centers...
- ... completion of centers creates new external chains...
- etc...
- impossibility to adapt
 - if the value that the simulator wants to adapt is already in the history, the simulator aborts...

(日) (四) (日) (日) (日)

sketch of the proof

- one must show that:
 - the simulator runs in polynomial time (no "chain reaction" leading to exponentially many recursive chain completions)
 - the simulator does not have to adapt values already in the history

• the two systems (Ψ_{10}^{F}, F) and (P, S^{P}) are indistinguishable

the simulator runs in polynomial time

comes from the fact that an external chain is created with non-negligible probability only if the distinguisher has made the corresponding query P(L||R) = S||T or P⁻¹(S||T) = L||R ⇒ this number is less than q

the simulator runs in polynomial time

- comes from the fact that an external chain is created with non-negligible probability only if the distinguisher has made the corresponding query P(L||R) = S||T or P⁻¹(S||T) = L||R ⇒ this number is less than q
- ▶ implies in turn that the history of F₅ and F₆ is bounded by 2q

 \Rightarrow the number of centers is less than $4q^2$

the simulator runs in polynomial time

- comes from the fact that an external chain is created with non-negligible probability only if the distinguisher has made the corresponding query P(L||R) = S||T or P⁻¹(S||T) = L||R ⇒ this number is less than q
- implies in turn that the history of F₅ and F₆ is bounded by 2q

 \Rightarrow the number of centers is less than $4q^2$

► leads to a number of *P*-queries of the simulator O(q⁴)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• $F_9(D)$ is defined randomly

・ロト・西・・田・・田・・日・

- $F_9(D)$ is defined randomly
- $\Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.

- $F_9(D)$ is defined randomly
- $\Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.

- $F_9(D)$ is defined randomly
- $\Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.
- ► A cannot be in the history of F₆, otherwise the center (Z, A) would already have been completed

- $F_9(D)$ is defined randomly
- $\Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.
- ► A cannot be in the history of F₆, otherwise the center (Z, A) would already have been completed
- \Rightarrow $F_6(A)$ is defined randomly

- $F_9(D)$ is defined randomly
- $\Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.
- ► A cannot be in the history of F₆, otherwise the center (Z, A) would already have been completed
- \Rightarrow $F_6(A)$ is defined randomly
- ► \Rightarrow $B = Z \oplus F_6(A)$ is uniformly distributed and is in the history of F_7 only with negl. prob.

indistinguishability of the two systems

- left to middle: the simulator is consistent with P
- middle to right: the answers of the simulator are statistically close to random
- conclusion: Ψ_{10}^{F} is indifferentiable from P
- ▶ for 6 rounds, same ideas plus some subtle technicalities...

 construction of public permutations (*e.g.* for permutation-based hashing or PK encryption)

- construction of public permutations (*e.g.* for permutation-based hashing or PK encryption)
- example of the Phan-Pointcheval 3R-OAEP scheme:
 - ▶ in the random permutation model for **P**

$$\operatorname{Enc}_{pk}(m; r) = \operatorname{TOWP}_{pk}(\boldsymbol{P}(m||r))$$

can be replaced in the ROM by a 3R Feistel scheme

$$s = m \oplus \boldsymbol{F}_1(r); \quad t = r \oplus \boldsymbol{F}_2(s); \quad u = s \oplus \boldsymbol{F}_3(t)$$

Enc_{pk}(m; r; ρ) = TOWP_{pk}(t||u|| ρ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- construction of public permutations (*e.g.* for permutation-based hashing or PK encryption)
- example of the Phan-Pointcheval 3R-OAEP scheme:
 - in the random permutation model for P

$$\operatorname{Enc}_{pk}(m; r) = \operatorname{TOWP}_{pk}(\boldsymbol{P}(m || r))$$

can be replaced in the ROM by a 3R Feistel scheme

$$s = m \oplus \boldsymbol{F}_1(r); \quad t = r \oplus \boldsymbol{F}_2(s); \quad u = s \oplus \boldsymbol{F}_3(t)$$

Enc_{pk}(m; r; ρ) = TOWP_{pk}(t||u|| ρ)

A D N A 目 N A E N A E N A B N A C N

▶ example of the Even-Mansour cipher: $E_{k_1,k_2}(m) = k_2 \oplus P(m \oplus k_1)$

- secure in the random permutation model for P
- secure in the ROM with a 4R Feistel scheme [GentryR04]

- construction of public permutations (*e.g.* for permutation-based hashing or PK encryption)
- example of the Phan-Pointcheval 3R-OAEP scheme:
 - in the random permutation model for P

$$\operatorname{Enc}_{pk}(m; r) = \operatorname{TOWP}_{pk}(\boldsymbol{P}(m||r))$$

can be replaced in the ROM by a 3R Feistel scheme

$$s = m \oplus \boldsymbol{F}_1(r); \quad t = r \oplus \boldsymbol{F}_2(s); \quad u = s \oplus \boldsymbol{F}_3(t)$$

Enc_{pk}(m; r; ρ) = TOWP_{pk}(t||u|| ρ)

• example of the Even-Mansour cipher: $E_{k_1,k_2}(m) = k_2 \oplus \boldsymbol{P}(m \oplus k_1)$

- secure in the random permutation model for P
- secure in the ROM with a 4R Feistel scheme [GentryR04]
- a dedicated analysis will often enable to replace a random permutation by a Feistel scheme with < 6 rounds

Theorem

The 6-round Luby-Rackoff construction with public random inner functions is indifferentiable from a random permutation.

the result does not guaranty anything when the internal functions are not perfect

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

The 6-round Luby-Rackoff construction with public random inner functions is indifferentiable from a random permutation.

- the result does not guaranty anything when the internal functions are not perfect
- the result says nothing about the rightfulness to replace an ideal cipher by AES, or a random oracle by SHAx (recent results show this may be risky [BiryukovKN09,LeurentN09])

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

The 6-round Luby-Rackoff construction with public random inner functions is indifferentiable from a random permutation.

- the result does not guaranty anything when the internal functions are not perfect
- the result says nothing about the rightfulness to replace an ideal cipher by AES, or a random oracle by SHAx (recent results show this may be risky [BiryukovKN09,LeurentN09])
- weaker (but still useful) models of indifferentiability: honest-but-curious model [DodisP06], correlation intractability [CanettiGH98]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

The 6-round Luby-Rackoff construction with public random inner functions is indifferentiable from a random permutation.

- the result does not guaranty anything when the internal functions are not perfect
- the result says nothing about the rightfulness to replace an ideal cipher by AES, or a random oracle by SHAx (recent results show this may be risky [BiryukovKN09,LeurentN09])
- weaker (but still useful) models of indifferentiability: honest-but-curious model [DodisP06], correlation intractability [CanettiGH98]
- open questions:
 - improve the tightness of the analysis, best (exponential) attacks
 - minimal number of calls to the random oracle to build a random permutation: are there constructions with < 6 calls to the RO?</p>

outline

indifferentiability

equivalence of the ROM and the ICM

doubling the domain of an ideal cipher

statement of the problem

 example of the Phan-Pointcheval 3R-OAEP scheme in the random permutation model for *P*

$$\operatorname{Enc}_{pk}(m; r) = \operatorname{TOWP}_{pk}(\boldsymbol{P}(m||r))$$

- how to instantiate the permutation *P* on 1024 or 2048 bits with, say, AES-128?
- previous domain extenders for ciphers (e.g. CMC, EME, TET...) were concerned only with conserving pseudorandomness (disk encryption), but they are not indifferentiable from an ideal cipher

an indifferentiable construction [CoronDMS10]

- this 3R-Feistel-like construction is indifferentiable from a random permutation
- prepending a key K to the 3 ideal ciphers gives a construction indifferentiable from an IC

- notation: E(key, message)
- $\Psi_2(L||R) = S||T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- attack works as follows:

- notation: E(key, message)
- $\Psi_2(L||R) = S||T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- attack works as follows:
 - choose $R = 0^n$ and $S = 0^n$

- notation: E(key, message)
- $\Psi_2(L||R) = S||T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- attack works as follows:
 - choose $R = 0^n$ and $S = 0^n$
 - query $L_0 = E_1^{-1}(R, S)$ and $T_0 = E_2(S, R)$

- notation: E(key, message)
- $\Psi_2(L||R) = S||T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- attack works as follows:
 - choose $R = 0^n$ and $S = 0^n$
 - query $L_0 = E_1^{-1}(R, S)$ and $T_0 = E_2(S, R)$

• then
$$\Psi_2(L_0, 0^n) = (0^n, T_0)$$

- notation: E(key, message)
- $\Psi_2(L||R) = S||T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- attack works as follows:
 - choose $R = 0^n$ and $S = 0^n$
 - query $L_0 = E_1^{-1}(R, S)$ and $T_0 = E_2(S, R)$

• then
$$\Psi_2(L_0, 0^n) = (0^n, T_0)$$

 such an I/O pair can be found only with negligible probability for a random permutation

simulation strategy

• on a query $E_1(L, R)$:

・ロト・日本・日本・日本・日本・日本
▶ on a query E₁(L, R):
▶ define E₁(R, L) (rand X)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- on a query $E_1(L, R)$:
 - define $E_1(R,L) \xleftarrow{\mathsf{rand}} X$
 - query $S \parallel T \leftarrow P(L|R)$

- on a query $E_1(L, R)$:
 - define $E_1(R,L) \xleftarrow{\mathsf{rand}} X$
 - query $S \parallel T \leftarrow \boldsymbol{P}(L|R)$
 - set E₂(X, R) = S and E₃(S, X) = T so that Ψ₃(L||R) = P(L||R) = S||T

- on a query $E_1(L, R)$:
 - define $E_1(R,L) \xleftarrow{} X$
 - query $S \parallel T \leftarrow \boldsymbol{P}(L|R)$
 - set E₂(X, R) = S and E₃(S, X) = T so that Ψ₃(L||R) = P(L||R) = S||T
- same strategy for other queries
- the simulator aborts if it cannot define a permutation for some E_i

practical considerations

 \blacktriangleright extending the key: one can use a random oracle H to define

$$E'(K',M)=E(H(K'),M)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

practical considerations

extending the key: one can use a random oracle H to define

$$E'(K',M)=E(H(K'),M)$$

- going beyond double: recursive construction
 - ► extending the domain by a factor t requires O(t^{log₂(3)}) ≃ O(t^{1.6}) applications of the original cipher

quickly unpractical

practical considerations

extending the key: one can use a random oracle H to define

$$E'(K',M)=E(H(K'),M)$$

- going beyond double: recursive construction
 - ► extending the domain by a factor t requires O(t^{log₂(3)}) ≃ O(t^{1.6}) applications of the original cipher
 - quickly unpractical
- alternative construction: build a random oracle with *n*-bit output from the ideal cipher, and use the 6-round Feistel construction to get a 2*n*-bit ideal cipher

thanks for your attention

comments or questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ