
Indifferentiability and Security Proofs in Idealized
Models

Yannick Seurin
Orange Labs

yannick.seurin@orange-ftgroup.com

21 May 2010
Univ. Rennes Crypto Seminar



intro

I unconditional security (a.k.a. information-theoretic security):
considers computationally unbounded adversaries, very inefficient
schemes

I standard model: polynomially-bounded adversaries, relies on
complexity assumptions, most desirable framework

I idealised models (ROM, ICM. . . ): good guideline to design efficient
schemes

I heuristic arguments and proof against specific attacks (e.g. proof
that AES is immune to differential and linear cryptanalysis)

I security proofs are never absolute: they rely on an attack model and
usually computational assumptions
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the random oracle model (ROM)

I modelizes a perfect hash function
I Random Oracle Model [BellareR93]: a publicly accessible oracle,

returning a n-bit random value for each new query
I widely used in PK security proofs (OAEP, PSS. . . )
I uninstantiability results [CanettiGH98, Nielsen02]
I schemes provably secure in the plain standard model

I Cramer-Shoup encryption
I Boneh-Boyen signatures. . .

are often less efficient or come at the price of less standard
complexity assumptions



the ideal cipher model (ICM) and the random permutation
model

I ICM modelizes a perfect a block cipher [Shannon49, Winternitz84]
I Ideal Cipher Model : a pair of publicly accessible oracles E(·, ·) and

E−1(·, ·), such that E(K , ·) is a random permutation for each key K
I Random Permutation Model: a single random permutation oracle P

and its inverse P−1

I less popular than the ROM, but:
I widely used for analyzing block cipher-based hash functions

[BlackRS02, Hirose06]
I used for the security proof of some PK schemes (encryption,

Authenticated Key Exchange. . . )
I uninstantiability results as well [Black06]



the “classical” indistinguishability notion

I well-known Luby-Rackoff result: the
Feistel scheme with 3 (resp. 4) rounds
and random functions is
indistinguishable from a random
permutation (resp. invertible RP)

I ⇒ any cryptosystem proven secure
with a random permutation remains
secure with the LR construction and
secret random functions
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I useful only in secret-key applications (e.g. PRF to PRP conversion)
I how do we generalise indistinguishability when the internal functions

are public? (e.g. for block cipher-based hash functions, public-key
encryption. . . )



indifferentiability: definition [MRH04]

I let G be an ideal primitive (e.g. a
random permutation), and C be a
construction using another ideal
primitive F which is public (e.g. the
Feistel construction using a random
oracle)
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I CF is said to be (q, σ, ε)-indifferentiable from G if there is a
simulator S making σ queries to G and such that any D making at
most q queries distinguishes (CF ,F ) and (G,SG) with advantage at
most ε

I informally the answers of S must be:
I consistent with answers the distinguisher can obtain directly from G
I indistinguishable from random

I the simulator cannot see the distinguisher’s queries to G!



indifferentiability is the right notion
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I any attacker against a cryptosystem Γ using CF can be turned into
an attacker against Γ using G by combining the attacker with the
simulator

I ⇒ CF can replace G in any cryptosystem without loss of security
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the ICM implies the ROM

H

21m m Lm

EE EIVIV

mm 1 L

I the ideal cipher model implies the random oracle model [CDMP05]
I variants of Merkle-Damgård used with an ideal cipher in

Davies-Meyer mode is indifferentiable from a random oracle
I ⇒ the construction can replace a RO in any cryptosystem without

loss of security
I what about the other direction?

→ Luby-Rackoff with 6 rounds
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5 rounds are not enough [CoronJP02]
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I for a random permutation one cannot find four I/O pairs such that
R0 ⊕ R1 ⊕ R2 ⊕ R3 = 0 and S0 ⊕ S1 ⊕ S2 ⊕ S3 = 0 except with negl.
prob.
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indifferentiability for 6 rounds or more

Theorem
The Luby-Rackoff construction with 6
rounds is (q, σ, ε)-indifferentiable from a
random permutation, with σ = O(q8) and
ε = O(q16/2n).
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I prepending a k-bit key to the random oracle calls yields a
construction indifferentiable from an ideal cipher

I simpler proof for 10 rounds (and better bounds):

Theorem
The Luby-Rackoff construction with 10 rounds is (q, σ, ε)-indifferentiable
from a random permutation, with σ = O(q4) and ε = O(q4/2n).



simulation strategy

I the simulator maintains an history for each Fi with
I values previously answered to the distinguisher
I values defined “by anticipation”

I when a query is not in the history, Fi (U) is defined
randomly

I the simulator completes “chains” created in the
history:

I external chains (W ,R,S,D)
I centers (Z ,A)

F10 S

F9 D

F8 C

F7 B

F6 A

F5 Z

F4 Y

F3 X

F2 W

F1

S T

L R



simulation strategy: external chains

I when W ,R, S,D are such that

P((W ⊕ F1(R))‖R) = S‖(D ⊕ F10(S))

they form an external chain
I the simulator completes the chain, defining

F3(X ), F4(Y ), F5(Z ) and F6(A) randomly. . .
I . . . and adapts the values of F7(B) and F8(C)

so that
Ψ10(L‖R) = P(L‖R)

F10

F9

F8 F8(C) = B ⊕D

F7 F7(B) = A⊕ C

F6

F5
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F2
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simulation strategy: centers

I any two values A and Z form a center
I the simulator defines F7(B), F8(C), F9(D),

and F10(S) randomly. . .
I . . . calls P−1(S‖(D ⊕ F10(S))) = L‖R. . .
I . . . defines randomly F1(R) and F2(W ). . .
I . . . and adapts the values of F3(X ) and

F4(Y ) so that

Ψ10(L‖R) = P(L‖R)
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what could go wrong

I exponential running-time
I completion of external chains creates

new centers. . .
I . . . completion of centers creates new

external chains. . .
I etc. . .

I impossibility to adapt
I if the value that the simulator wants

to adapt is already in the history, the
simulator aborts. . .
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F2 W
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S T

L R



sketch of the proof

I one must show that:
I the simulator runs in polynomial time (no “chain reaction” leading

to exponentially many recursive chain completions)
I the simulator does not have to adapt values already in the history
I the two systems (ΨF

10,F ) and (P,SP) are indistinguishable



the simulator runs in polynomial time

I comes from the fact that an external chain is
created with non-negligible probability only if
the distinguisher has made the corresponding
query P(L‖R) = S‖T or P−1(S‖T ) = L‖R
⇒ this number is less than q

I implies in turn that the history of F5 and F6 is
bounded by 2q
⇒ the number of centers is less than 4q2

I leads to a number of P-queries of the
simulator O(q4)
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the simulator can always adapt

I F9(D) is defined randomly
I ⇒ C = S ⊕ F9(D) is uniformly

distributed and is in the history
of F8 only with negl. prob.

I A cannot be in the history of F6,
otherwise the center (Z ,A) would
already have been completed

I ⇒ F6(A) is defined randomly
I ⇒ B = Z ⊕ F6(A) is uniformly

distributed and is in the history
of F7 only with negl. prob.

F10 S

F9 F9(D) $←− {0, 1}n

F8 C = S ⊕ F9(D) ∈u {0, 1}n

F7 B = Z ⊕ F6(A) ∈u {0, 1}n

F6 F6(A) $←− {0, 1}n

F5

F4

F3

F2 W

F1 R

S T

L R



the simulator can always adapt

I F9(D) is defined randomly
I ⇒ C = S ⊕ F9(D) is uniformly

distributed and is in the history
of F8 only with negl. prob.

I A cannot be in the history of F6,
otherwise the center (Z ,A) would
already have been completed

I ⇒ F6(A) is defined randomly
I ⇒ B = Z ⊕ F6(A) is uniformly

distributed and is in the history
of F7 only with negl. prob.

F10 S

F9 D F9(D) $←− {0, 1}n

F8 C = S ⊕ F9(D) ∈u {0, 1}n

F7 B = Z ⊕ F6(A) ∈u {0, 1}n

F6 F6(A) $←− {0, 1}n

F5

F4

F3

F2 W

F1 R

S T

L R



the simulator can always adapt

I F9(D) is defined randomly

I ⇒ C = S ⊕ F9(D) is uniformly
distributed and is in the history
of F8 only with negl. prob.

I A cannot be in the history of F6,
otherwise the center (Z ,A) would
already have been completed

I ⇒ F6(A) is defined randomly
I ⇒ B = Z ⊕ F6(A) is uniformly

distributed and is in the history
of F7 only with negl. prob.

F10 S

F9 D F9(D) $←− {0, 1}n

F8 C = S ⊕ F9(D) ∈u {0, 1}n

F7 B = Z ⊕ F6(A) ∈u {0, 1}n

F6 F6(A) $←− {0, 1}n

F5

F4

F3

F2 W

F1 R

S T

L R



the simulator can always adapt

I F9(D) is defined randomly
I ⇒ C = S ⊕ F9(D) is uniformly

distributed and is in the history
of F8 only with negl. prob.

I A cannot be in the history of F6,
otherwise the center (Z ,A) would
already have been completed

I ⇒ F6(A) is defined randomly
I ⇒ B = Z ⊕ F6(A) is uniformly

distributed and is in the history
of F7 only with negl. prob.

F10 S

F9 D F9(D) $←− {0, 1}n

F8 C = S ⊕ F9(D) ∈u {0, 1}n

F7 B = Z ⊕ F6(A) ∈u {0, 1}n

F6 F6(A) $←− {0, 1}n

F5

F4

F3

F2 W

F1 R

S T

L R



the simulator can always adapt

I F9(D) is defined randomly
I ⇒ C = S ⊕ F9(D) is uniformly

distributed and is in the history
of F8 only with negl. prob.

I A cannot be in the history of F6,
otherwise the center (Z ,A) would
already have been completed

I ⇒ F6(A) is defined randomly
I ⇒ B = Z ⊕ F6(A) is uniformly

distributed and is in the history
of F7 only with negl. prob.

F10 S

F9 D F9(D) $←− {0, 1}n

F8 C = S ⊕ F9(D) ∈u {0, 1}n

F7 B = Z ⊕ F6(A) ∈u {0, 1}n

F6 F6(A) $←− {0, 1}n

F5 Z

F4 Y

F3 X

F2 W

F1 R

S T

L R



the simulator can always adapt

I F9(D) is defined randomly
I ⇒ C = S ⊕ F9(D) is uniformly

distributed and is in the history
of F8 only with negl. prob.

I A cannot be in the history of F6,
otherwise the center (Z ,A) would
already have been completed

I ⇒ F6(A) is defined randomly
I ⇒ B = Z ⊕ F6(A) is uniformly

distributed and is in the history
of F7 only with negl. prob.

F10 S

F9 D F9(D) $←− {0, 1}n

F8 C = S ⊕ F9(D) ∈u {0, 1}n

F7 B = Z ⊕ F6(A) ∈u {0, 1}n

F6 A F6(A) $←− {0, 1}n

F5 Z

F4 Y

F3 X

F2 W

F1 R

S T

L R



the simulator can always adapt

I F9(D) is defined randomly
I ⇒ C = S ⊕ F9(D) is uniformly

distributed and is in the history
of F8 only with negl. prob.

I A cannot be in the history of F6,
otherwise the center (Z ,A) would
already have been completed

I ⇒ F6(A) is defined randomly

I ⇒ B = Z ⊕ F6(A) is uniformly
distributed and is in the history
of F7 only with negl. prob.

F10 S

F9 D F9(D) $←− {0, 1}n

F8 C = S ⊕ F9(D) ∈u {0, 1}n

F7 B = Z ⊕ F6(A) ∈u {0, 1}n

F6 A F6(A) $←− {0, 1}n

F5 Z

F4 Y

F3 X

F2 W

F1 R

S T

L R



the simulator can always adapt

I F9(D) is defined randomly
I ⇒ C = S ⊕ F9(D) is uniformly

distributed and is in the history
of F8 only with negl. prob.

I A cannot be in the history of F6,
otherwise the center (Z ,A) would
already have been completed

I ⇒ F6(A) is defined randomly
I ⇒ B = Z ⊕ F6(A) is uniformly

distributed and is in the history
of F7 only with negl. prob.

F10 S

F9 D F9(D) $←− {0, 1}n

F8 C = S ⊕ F9(D) ∈u {0, 1}n

F7 B = Z ⊕ F6(A) ∈u {0, 1}n

F6 A F6(A) $←− {0, 1}n

F5 Z

F4 Y

F3 X

F2 W

F1 R

S T

L R



indistinguishability of the two systems

D

P S

0/1

D

Ψ10

P

S

0/1

D

Ψ10 F

0/1

I left to middle: the simulator is consistent with P
I middle to right: the answers of the simulator are statistically close

to random
I conclusion: ΨF

10 is indifferentiable from P
I for 6 rounds, same ideas plus some subtle technicalities. . .



applications

I construction of public permutations (e.g. for permutation-based
hashing or PK encryption)

I example of the Phan-Pointcheval 3R-OAEP scheme:
I in the random permutation model for P

Encpk(m; r) = TOWPpk(P(m‖r))

I can be replaced in the ROM by a 3R Feistel scheme

s = m ⊕ F 1(r); t = r ⊕ F 2(s); u = s ⊕ F 3(t)

Encpk(m; r ; ρ) = TOWPpk(t‖u‖ρ)

I example of the Even-Mansour cipher: Ek1,k2(m) = k2 ⊕ P(m ⊕ k1)
I secure in the random permutation model for P
I secure in the ROM with a 4R Feistel scheme [GentryR04]

I a dedicated analysis will often enable to replace a random
permutation by a Feistel scheme with < 6 rounds
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conclusion and open questions

Theorem
The 6-round Luby-Rackoff construction with public random inner
functions is indifferentiable from a random permutation.

I the result does not guaranty anything when the internal functions
are not perfect

I the result says nothing about the rightfulness to replace an ideal
cipher by AES, or a random oracle by SHAx (recent results show
this may be risky [BiryukovKN09,LeurentN09])

I weaker (but still useful) models of indifferentiability:
honest-but-curious model [DodisP06], correlation intractability
[CanettiGH98]

I open questions:
I improve the tightness of the analysis, best (exponential) attacks
I minimal number of calls to the random oracle to build a random

permutation: are there constructions with < 6 calls to the RO?
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statement of the problem

I example of the Phan-Pointcheval 3R-OAEP scheme in the random
permutation model for P

Encpk(m; r) = TOWPpk(P(m‖r))

I how to instantiate the permutation P on 1024 or 2048 bits with,
say, AES-128?

I previous domain extenders for ciphers (e.g. CMC, EME, TET. . . )
were concerned only with conserving pseudorandomness (disk
encryption), but they are not indifferentiable from an ideal cipher



an indifferentiable construction [CoronDMS10]

I this 3R-Feistel-like construction is
indifferentiable from a random
permutation

I prepending a key K to the 3 ideal
ciphers gives a construction
indifferentiable from an IC

E1

E2

E3

L R

X

S

S T

E1

E2
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S

S T

K

K
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attack against two rounds

I notation: E (key,message)

I Ψ2(L‖R) = S‖T
with S = E1(R, L) and T = E2(S,R)

I attack works as follows:

I choose R = 0n and S = 0n

I query L0 = E−1
1 (R, S) and

T0 = E2(S,R)
I then Ψ2(L0, 0n) = (0n,T0)

I such an I/O pair can be found only
with negligible probability for a random
permutation

E1

E2

L R

S

S T



attack against two rounds

I notation: E (key,message)

I Ψ2(L‖R) = S‖T
with S = E1(R, L) and T = E2(S,R)

I attack works as follows:
I choose R = 0n and S = 0n

I query L0 = E−1
1 (R, S) and

T0 = E2(S,R)
I then Ψ2(L0, 0n) = (0n,T0)

I such an I/O pair can be found only
with negligible probability for a random
permutation

E1

E2

L R

S

S T



attack against two rounds

I notation: E (key,message)

I Ψ2(L‖R) = S‖T
with S = E1(R, L) and T = E2(S,R)

I attack works as follows:
I choose R = 0n and S = 0n

I query L0 = E−1
1 (R, S) and

T0 = E2(S,R)

I then Ψ2(L0, 0n) = (0n,T0)

I such an I/O pair can be found only
with negligible probability for a random
permutation

E1

E2

L R

S

S T



attack against two rounds

I notation: E (key,message)

I Ψ2(L‖R) = S‖T
with S = E1(R, L) and T = E2(S,R)

I attack works as follows:
I choose R = 0n and S = 0n

I query L0 = E−1
1 (R, S) and

T0 = E2(S,R)
I then Ψ2(L0, 0n) = (0n,T0)

I such an I/O pair can be found only
with negligible probability for a random
permutation

E1

E2

L R

S

S T



attack against two rounds

I notation: E (key,message)

I Ψ2(L‖R) = S‖T
with S = E1(R, L) and T = E2(S,R)

I attack works as follows:
I choose R = 0n and S = 0n

I query L0 = E−1
1 (R, S) and

T0 = E2(S,R)
I then Ψ2(L0, 0n) = (0n,T0)

I such an I/O pair can be found only
with negligible probability for a random
permutation

E1

E2

L R

S

S T



simulation strategy

I on a query E1(L,R):

I define E1(R, L)
rand←−− X

I query S‖T ← P(L|R)
I set E2(X ,R) = S and E3(S,X ) = T

so that Ψ3(L‖R) = P(L‖R) = S‖T
I same strategy for other queries
I the simulator aborts if it cannot define

a permutation for some Ei
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practical considerations

I extending the key: one can use a random oracle H to define

E ′(K ′,M) = E (H(K ′),M)

I going beyond double: recursive construction
I extending the domain by a factor t requires O(t log2(3)) ' O(t1.6)

applications of the original cipher
I quickly unpractical

I alternative construction: build a random oracle with n-bit output
from the ideal cipher, and use the 6-round Feistel construction to
get a 2n-bit ideal cipher
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thanks for your attention

comments or questions?
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