Indifferentiability and Security Proofs in Idealized Models

Yannick Seurin Orange Labs yannick.seurin@orange-ftgroup.com

21 May 2010 Univ. Rennes Crypto Seminar

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

intro

- \triangleright unconditional security (a.k.a. information-theoretic security): considers computationally unbounded adversaries, very inefficient schemes
- \triangleright standard model: polynomially-bounded adversaries, relies on complexity assumptions, most desirable framework
- \triangleright idealised models (ROM, ICM. . .): good guideline to design efficient schemes
- \blacktriangleright heuristic arguments and proof against specific attacks (e.g. proof that AES is immune to differential and linear cryptanalysis)
- \triangleright security proofs are never absolute: they rely on an attack model and usually computational assumptions

[indifferentiability](#page-3-0)

[equivalence of the ROM and the ICM](#page-9-0)

[doubling the domain of an ideal cipher](#page-63-0)

outline

[indifferentiability](#page-3-0)

[equivalence of the ROM and the ICM](#page-9-0)

[doubling the domain of an ideal cipher](#page-63-0)

the random oracle model (ROM)

- \blacktriangleright modelizes a perfect hash function
- \triangleright Random Oracle Model [BellareR93]: a publicly accessible oracle, returning a *n*-bit random value for each new query
- \triangleright widely used in PK security proofs (OAEP, PSS...)
- \triangleright uninstantiability results [CanettiGH98, Nielsen02]
- \triangleright schemes provably secure in the plain standard model
	- \triangleright Cramer-Shoup encryption
	- \blacktriangleright Boneh-Boyen signatures...

are often less efficient or come at the price of less standard complexity assumptions

KORKAR KERKER SAGA

the ideal cipher model (ICM) and the random permutation model

- \triangleright ICM modelizes a perfect a block cipher [Shannon49, Winternitz84]
- I Ideal Cipher Model: a pair of publicly accessible oracles $E(\cdot, \cdot)$ and $\boldsymbol{E}^{-1}(\cdot,\cdot)$, such that $\boldsymbol{E}(K,\cdot)$ is a random permutation for each key K
- ▶ Random Permutation Model: a single random permutation oracle **P** and its inverse \boldsymbol{P}^{-1}
- \blacktriangleright less popular than the ROM, but:
	- \triangleright widely used for analyzing block cipher-based hash functions [BlackRS02, Hirose06]
	- \triangleright used for the security proof of some PK schemes (encryption, Authenticated Key Exchange. . .)

KORKAR KERKER SAGA

 \triangleright uninstantiability results as well [Black06]

the "classical" indistinguishability notion

- \triangleright well-known Luby-Rackoff result: the Feistel scheme with 3 (resp. 4) rounds and random functions is indistinguishable from a random permutation (resp. invertible RP)
- $\triangleright \Rightarrow$ any cryptosystem proven secure with a random permutation remains secure with the LR construction and **secret** random functions

KORKARYKERKER OQO

- \triangleright useful only in secret-key applications (e.g. PRF to PRP conversion)
- \triangleright how do we generalise indistinguishability when the internal functions are **public**? (e.g. for block cipher-based hash functions, public-key encryption. . .)

indifferentiability: definition [MRH04]

 \blacktriangleright let **G** be an ideal primitive (e.g. a random permutation), and C be a construction using another ideal primitive **F** which is **public** (e.g. the Feistel construction using a random oracle)

- \blacktriangleright $\mathcal{C}^{\textbf{\textit{F}}}$ is said to be (q,σ,ϵ) -indifferentiable from $\textbf{\textit{G}}$ if there is a simulator S making σ queries to **G** and such that any D making at most q queries distinguishes $(\mathcal{C}^{\boldsymbol{F}},\boldsymbol{F})$ and $(\boldsymbol{G},\mathcal{S}^{\boldsymbol{G}})$ with advantage at most ϵ
- informally the answers of S must be:
	- \triangleright consistent with answers the distinguisher can obtain directly from \boldsymbol{G}
	- \blacktriangleright indistinguishable from random
- If the simulator cannot see the distinguisher's queries to \boldsymbol{G} !

indifferentiability is the right notion

- \blacktriangleright any attacker against a cryptosystem Γ using \mathcal{C}^{\digamma} can be turned into an attacker against Γ using **G** by combining the attacker with the simulator
- $\blacktriangleright \Rightarrow \mathcal{C}^{\textbf{\textit{F}}}$ can replace \boldsymbol{G} in any cryptosystem without loss of security

outline

[indifferentiability](#page-3-0)

[equivalence of the ROM and the ICM](#page-9-0)

[doubling the domain of an ideal cipher](#page-63-0)

the ICM implies the ROM

- \triangleright the ideal cipher model implies the random oracle model $[CDMP05]$
- \triangleright variants of Merkle-Damgård used with an ideal cipher in Davies-Meyer mode is indifferentiable from a random oracle
- $\triangleright \Rightarrow$ the construction can replace a RO in any cryptosystem without loss of security

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 QQ

 \triangleright what about the other direction?

the ICM implies the ROM

- \triangleright the ideal cipher model implies the random oracle model $[CDMP05]$
- \triangleright variants of Merkle-Damgård used with an ideal cipher in Davies-Meyer mode is indifferentiable from a random oracle
- $\triangleright \Rightarrow$ the construction can replace a RO in any cryptosystem without loss of security
- \triangleright what about the other direction? \rightarrow Luby-Rackoff with 6 rounds

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

 X_{12}

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

 2990

 X_{12}

*Y*¹⁴ *Y*²³

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

S T

メロトメ 御 トメ 差 トメ 差 ト

È

S T

メロトメ 御 トメ 差 トメ 差 ト

È

S T

イロト イ部 トイ君 トイ君 ト

重

S T

メロトメ 御 トメ 差 トメ 差 ト

È

メロトメ 御 トメ 差 トメ 差 ト È 2990

S T

イロト イ部 トイ君 トイ君 ト 重 2990

 \triangleright for a random permutation one cannot find four I/O pairs such that $R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0$ and $S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0$ except with negl. prob.

KORKARYKERKER OQO

indifferentiability for 6 rounds or more

Theorem

The Luby-Rackoff construction with 6 rounds is (q, σ, ϵ) -indifferentiable from a *random permutation, with* $\sigma = \mathcal{O}(q^8)$ and $\epsilon = \mathcal{O}(q^{16}/2^n).$

- repending a k -bit key to the random oracle calls vields a construction indifferentiable from an ideal cipher
- \triangleright simpler proof for 10 rounds (and better bounds):

Theorem

The Luby-Rackoff construction with 10 rounds is (q, σ, ϵ) -indifferentiable from a random permutation, with $\sigma = \mathcal{O}(q^4)$ and $\epsilon = \mathcal{O}(q^4/2^n)$.

simulation strategy

- \triangleright the simulator maintains an history for each F_i with
	- \triangleright values previously answered to the distinguisher
	- \blacktriangleright values defined "by anticipation"
- ightharpoonup when a query is not in the history, $F_i(U)$ is defined randomly
- \triangleright the simulator completes "chains" created in the history:
	- \blacktriangleright external chains (W, R, S, D)
	- \blacktriangleright centers (Z, A)

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

 \blacktriangleright when W, R, S, D are such that

 $P((W \oplus F_1(R))||R) = S||(D \oplus F_{10}(S))$

they form an external chain

 \blacktriangleright when W, R, S, D are such that

 $P((W \oplus F_1(R))||R) = S||(D \oplus F_{10}(S))$

they form an external chain

 \triangleright the simulator completes the chain, defining $F_3(X)$, $F_4(Y)$, $F_5(Z)$ and $F_6(A)$ randomly...

 \blacktriangleright when W, R, S, D are such that

 $P((W \oplus F_1(R))||R) = S||(D \oplus F_{10}(S))$

they form an external chain

- \triangleright the simulator completes the chain, defining $F_3(X)$, $F_4(Y)$, $F_5(Z)$ and $F_6(A)$ randomly...
- \blacktriangleright ... and adapts the values of $F_7(B)$ and $F_8(C)$ so that

$$
\Psi_{10}(L||R) = \boldsymbol{P}(L||R)
$$

simulation strategy: centers

simulation strategy: centers

simulation strategy: centers

\blacktriangleright any two values A and Z form a center

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \triangleright any two values A and Z form a center
- ighthroap the simulator defines $F_7(B)$, $F_8(C)$, $F_9(D)$, and $F_{10}(S)$ randomly...

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- \triangleright any two values A and Z form a center
- ighthroap the simulator defines $F_7(B)$, $F_8(C)$, $F_9(D)$, and $F_{10}(S)$ randomly...
- \blacktriangleright \ldots calls $\boldsymbol{P}^{-1}(S\|(D \oplus F_{10}(S))) = L\|R \ldots$

- \triangleright any two values A and Z form a center
- ighthroap the simulator defines $F_7(B)$, $F_8(C)$, $F_9(D)$, and $F_{10}(S)$ randomly...
- \blacktriangleright \ldots calls $\boldsymbol{P}^{-1}(S\|(D \oplus F_{10}(S))) = L\|R \ldots$
- \blacktriangleright ... defines randomly $F_1(R)$ and $F_2(W)$...

- \triangleright any two values A and Z form a center
- ighthroap the simulator defines $F_7(B)$, $F_8(C)$, $F_9(D)$, and $F_{10}(S)$ randomly...
- \blacktriangleright \ldots calls $\boldsymbol{P}^{-1}(S\|(D \oplus F_{10}(S))) = L\|R \ldots$
- \blacktriangleright ... defines randomly $F_1(R)$ and $F_2(W)$...
- \blacktriangleright ... and adapts the values of $F_3(X)$ and $F_4(Y)$ so that

$$
\Psi_{10}(L||R) = P(L||R)
$$

what could go wrong

\triangleright exponential running-time

- \triangleright completion of external chains creates new centers
- \blacktriangleright ... completion of centers creates new external chains. . .
- \blacktriangleright etc.
- \blacktriangleright impossibility to adapt
	- \triangleright if the value that the simulator wants to adapt is already in the history, the simulator aborts. . .

 QQ

sketch of the proof

- \triangleright one must show that:
	- \triangleright the simulator runs in polynomial time (no "chain reaction" leading to exponentially many recursive chain completions)
	- \triangleright the simulator does not have to adapt values already in the history

KORKAR KERKER SAGA

 \blacktriangleright the two systems $(\Psi_{10}^{\mathcal{F}}, \mathcal{F})$ and $(\mathcal{P}, \mathcal{S}^{\mathcal{P}})$ are indistinguishable

the simulator runs in polynomial time

 \triangleright comes from the fact that an external chain is created with non-negligible probability only if the distinguisher has made the corresponding query $\boldsymbol{P}(L \| R) = S \| \, \mathcal{T}$ or $\boldsymbol{P}^{-1}(S \| \, \mathcal{T}) = L \| R$ \Rightarrow this number is less than q

 2990

the simulator runs in polynomial time

- \triangleright comes from the fact that an external chain is created with non-negligible probability only if the distinguisher has made the corresponding query $\boldsymbol{P}(L \| R) = S \| \, \mathcal{T}$ or $\boldsymbol{P}^{-1}(S \| \, \mathcal{T}) = L \| R$ \Rightarrow this number is less than q
- implies in turn that the history of F_5 and F_6 is bounded by 2q

 \Rightarrow the number of centers is less than 4 q^2

the simulator runs in polynomial time

- \triangleright comes from the fact that an external chain is created with non-negligible probability only if the distinguisher has made the corresponding query $\boldsymbol{P}(L \| R) = S \| \, \mathcal{T}$ or $\boldsymbol{P}^{-1}(S \| \, \mathcal{T}) = L \| R$ \Rightarrow this number is less than q
- implies in turn that the history of F_5 and F_6 is bounded by 2q

 \Rightarrow the number of centers is less than 4 q^2

 \blacktriangleright leads to a number of P -queries of the simulator $\mathcal{O}(q^4)$

イロト 不優 トイ磨 トイ磨 トー 磨っ 2990

イロト 不優 トイ磨 トイ磨 トー 磨っ 2990

 \blacktriangleright $F_9(D)$ is defined randomly

- \blacktriangleright $F_9(D)$ is defined randomly
- $\triangleright \Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.

- \blacktriangleright $F_9(D)$ is defined randomly
- $\triangleright \Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.

- \blacktriangleright $F_9(D)$ is defined randomly
- $\triangleright \Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.
- A cannot be in the history of F_6 , otherwise the center (Z, A) would already have been completed

- \blacktriangleright $F_9(D)$ is defined randomly
- $\triangleright \Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.
- A cannot be in the history of F_6 , otherwise the center (Z, A) would already have been completed
- \blacktriangleright \Rightarrow $F_6(A)$ is defined randomly

- \blacktriangleright $F_9(D)$ is defined randomly
- $\triangleright \Rightarrow C = S \oplus F_9(D)$ is uniformly distributed and is in the history of F_8 only with negl. prob.
- A cannot be in the history of F_6 , otherwise the center (Z*,* A) would already have been completed
- $\blacktriangleright \Rightarrow F_6(A)$ is defined randomly
- $\triangleright \Rightarrow B = Z \oplus F_6(A)$ is uniformly distributed and is in the history of F_7 only with negl. prob.

indistinguishability of the two systems

- \blacktriangleright left to middle: the simulator is consistent with \blacktriangleright
- \triangleright middle to right: the answers of the simulator are statistically close to random
- \blacktriangleright conclusion: Ψ_{10}^{F} is indifferentiable from $\textbf{\textit{P}}$
- \triangleright for 6 rounds, same ideas plus some subtle technicalities...

 \triangleright construction of public permutations (e.g. for permutation-based hashing or PK encryption)

- \triangleright construction of public permutations (e.g. for permutation-based hashing or PK encryption)
- \triangleright example of the Phan-Pointcheval 3R-OAEP scheme:
	- \blacktriangleright in the random permutation model for \blacktriangleright

$$
Enc_{pk}(m; r) = \text{TOWP}_{pk}(\boldsymbol{P}(m||r))
$$

 \triangleright can be replaced in the ROM by a 3R Feistel scheme

$$
s = m \oplus F_1(r); \quad t = r \oplus F_2(s); \quad u = s \oplus F_3(t)
$$

Enc_{pk}(m; r; ρ) = TOWP_{pk}(t||u||ρ)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \triangleright construction of public permutations (e.g. for permutation-based hashing or PK encryption)
- \triangleright example of the Phan-Pointcheval 3R-OAEP scheme:
	- \triangleright in the random permutation model for \boldsymbol{P}

$$
Enc_{pk}(m; r) = \text{TOWP}_{pk}(\boldsymbol{P}(m||r))
$$

 \triangleright can be replaced in the ROM by a 3R Feistel scheme

$$
s = m \oplus F_1(r); \quad t = r \oplus F_2(s); \quad u = s \oplus F_3(t)
$$

Enc_{pk}(m; r; ρ) = TOWP_{pk}(t||u||ρ)

KORKAR KERKER SAGA

► example of the Even-Mansour cipher: $E_{k_1,k_2}(m) = k_2 \oplus \boldsymbol{P}(m \oplus k_1)$

- \triangleright secure in the random permutation model for \boldsymbol{P}
- \triangleright secure in the ROM with a 4R Feistel scheme [GentryR04]

- \triangleright construction of public permutations (e.g. for permutation-based hashing or PK encryption)
- \triangleright example of the Phan-Pointcheval 3R-OAEP scheme:
	- \triangleright in the random permutation model for \boldsymbol{P}

$$
Enc_{pk}(m; r) = \text{TOWP}_{pk}(\boldsymbol{P}(m||r))
$$

 \triangleright can be replaced in the ROM by a 3R Feistel scheme

$$
s = m \oplus F_1(r); \quad t = r \oplus F_2(s); \quad u = s \oplus F_3(t)
$$

Enc_{pk}(m; r; ρ) = TOWP_{pk}(t||u||ρ)

► example of the Even-Mansour cipher: $E_{k_1,k_2}(m) = k_2 \oplus \boldsymbol{P}(m \oplus k_1)$

- \triangleright secure in the random permutation model for \boldsymbol{P}
- \triangleright secure in the ROM with a 4R Feistel scheme [GentryR04]
- \triangleright a dedicated analysis will often enable to replace a random permutation by a Feistel scheme with < 6 rounds

Theorem

The 6-round Luby-Rackoff construction with public random inner functions is indifferentiable from a random permutation.

 \triangleright the result does not guaranty anything when the internal functions are not perfect

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Theorem

The 6-round Luby-Rackoff construction with public random inner functions is indifferentiable from a random permutation.

- \triangleright the result does not guaranty anything when the internal functions are not perfect
- \triangleright the result says nothing about the rightfulness to replace an ideal cipher by AES, or a random oracle by SHAx (recent results show this may be risky [BiryukovKN09,LeurentN09])

Theorem

The 6-round Luby-Rackoff construction with public random inner functions is indifferentiable from a random permutation.

- \triangleright the result does not guaranty anything when the internal functions are not perfect
- \triangleright the result says nothing about the rightfulness to replace an ideal cipher by AES, or a random oracle by SHAx (recent results show this may be risky [BiryukovKN09,LeurentN09])
- \triangleright weaker (but still useful) models of indifferentiability: honest-but-curious model [DodisP06], correlation intractability [CanettiGH98]

Theorem

The 6-round Luby-Rackoff construction with public random inner functions is indifferentiable from a random permutation.

- \triangleright the result does not guaranty anything when the internal functions are not perfect
- \triangleright the result says nothing about the rightfulness to replace an ideal cipher by AES, or a random oracle by SHAx (recent results show this may be risky [BiryukovKN09,LeurentN09])
- \triangleright weaker (but still useful) models of indifferentiability: honest-but-curious model [DodisP06], correlation intractability [CanettiGH98]
- \triangleright open questions:
	- \triangleright improve the tightness of the analysis, best (exponential) attacks
	- \triangleright minimal number of calls to the random oracle to build a random permutation: are there constructions with < 6 calls to the RO?

outline

[indifferentiability](#page-3-0)

[equivalence of the ROM and the ICM](#page-9-0)

[doubling the domain of an ideal cipher](#page-63-0)

statement of the problem

 \triangleright example of the Phan-Pointcheval 3R-OAEP scheme in the random permutation model for **P**

$$
Enc_{pk}(m; r) = \text{TOWP}_{pk}(\boldsymbol{P}(m||r))
$$

- ighthow to instantiate the permutation P on 1024 or 2048 bits with, say, AES-128?
- **P** previous domain extenders for ciphers (e.g. CMC, EME, TET...) were concerned only with conserving pseudorandomness (disk encryption), but they are not indifferentiable from an ideal cipher

KORKAR KERKER SAGA

an indifferentiable construction [CoronDMS10]

- \triangleright this 3R-Feistel-like construction is indifferentiable from a random permutation
- repending a key K to the 3 ideal ciphers gives a construction indifferentiable from an IC

KORK EXTERNE PROVIDE

 \blacktriangleright notation: E (key, message)

$$
\begin{aligned}\n\blacktriangleright \ \Psi_2(L||R) &= S||T \\
\text{with } S &= E_1(R, L) \text{ and } T = E_2(S, R)\n\end{aligned}
$$

 \blacktriangleright attack works as follows:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- \blacktriangleright notation: E (key, message)
- $\blacktriangleright \Psi_2(L \| R) = S \| T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- \blacktriangleright attack works as follows:
	- choose $R = 0^n$ and $S = 0^n$

KORKARYKERKER OQO

- \blacktriangleright notation: E (key, message)
- $\blacktriangleright \Psi_2(L \| R) = S \| T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- \blacktriangleright attack works as follows:
	- choose $R = 0^n$ and $S = 0^n$
	- ► query $L_0 = E_1^{-1}(R, S)$ and $T_0 = E_2(S, R)$

KORK EXTERNE PROVIDE

- \blacktriangleright notation: E (key, message)
- $\blacktriangleright \Psi_2(L \| R) = S \| T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- \blacktriangleright attack works as follows:
	- choose $R = 0^n$ and $S = 0^n$
	- ► query $L_0 = E_1^{-1}(R, S)$ and $T_0 = E_2(S, R)$

• then
$$
\Psi_2(L_0, 0^n) = (0^n, T_0)
$$

KORK EXTERNE PROVIDE

- \blacktriangleright notation: E (key, message)
- $\blacktriangleright \psi_2(L\|R) = S\|T$ with $S = E_1(R, L)$ and $T = E_2(S, R)$
- \blacktriangleright attack works as follows:
	- choose $R = 0^n$ and $S = 0^n$
	- ► query $L_0 = E_1^{-1}(R, S)$ and $T_0 = E_2(S, R)$

► then
$$
\Psi_2(L_0, 0^n) = (0^n, T_0)
$$

 \triangleright such an I/O pair can be found only with negligible probability for a random permutation

KORKARYKERKER OQO

simulation strategy

• on a query $E_1(L, R)$:

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q
• on a query $E_1(L, R)$: \blacktriangleright define $E_1(R,L) \xleftarrow{\text{rand}} X$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

- \blacktriangleright on a query $E_1(L, R)$:
	- \blacktriangleright define $E_1(R,L) \xleftarrow{\text{rand}} X$
	- **•** query $S \parallel T \leftarrow P(L|R)$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \triangleright on a query $E_1(L, R)$:
	- \blacktriangleright define $E_1(R,L) \xleftarrow{\text{rand}} X$
	- **•** query $S||T \leftarrow P(L|R)$
	- \blacktriangleright set $E_2(X,R) = S$ and $E_3(S,X) = T$ so that $\Psi_3(L||R) = P(L||R) = S||T$

KORKARYKERKER OQO

- \triangleright on a query $E_1(L, R)$:
	- \blacktriangleright define $E_1(R,L) \xleftarrow{\text{rand}} X$
	- **•** query $S||T \leftarrow P(L|R)$
	- \blacktriangleright set $E_2(X,R) = S$ and $E_3(S,X) = T$ so that $\Psi_3(L||R) = P(L||R) = S||T$
- \blacktriangleright same strategy for other queries
- \triangleright the simulator aborts if it cannot define a permutation for some E_i

KORKARYKERKER OQO

practical considerations

 \triangleright extending the key: one can use a random oracle H to define

$$
E'(K',M)=E(H(K'),M)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

practical considerations

Extending the key: one can use a random oracle H to define

$$
E'(K',M)=E(H(K'),M)
$$

- \triangleright going beyond double: recursive construction
	- \blacktriangleright extending the domain by a factor t requires $\mathcal{O}(t^{\log_2(3)}) \simeq \mathcal{O}(t^{1.6})$ applications of the original cipher

KORKARYKERKER OQO

 \blacktriangleright quickly unpractical

practical considerations

Extending the key: one can use a random oracle H to define

$$
E'(K',M)=E(H(K'),M)
$$

- \triangleright going beyond double: recursive construction
	- \blacktriangleright extending the domain by a factor t requires $\mathcal{O}(t^{\log_2(3)}) \simeq \mathcal{O}(t^{1.6})$ applications of the original cipher
	- \blacktriangleright quickly unpractical
- In alternative construction: build a random oracle with *n*-bit output from the ideal cipher, and use the 6-round Feistel construction to get a 2n-bit ideal cipher

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

thanks for your attention

comments or questions?

Kロトメ部トメミトメミト ミニのQC