On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction

Avradip Mandal¹ Jacques Patarin² Yannick Seurin³

¹University of Luxembourg

²University of Versailles, France

³ANSSI, France

March 20, TCC 2012

- building cryptographic permutations from cryptographic functions: the *r*-round Feistel construction Ψ_r
- round functions = random oracles F
- does the Feistel construction Ψ^F_r "behave" as a random permutation **P**?
- secret round functions
 ⇒ Luby-Rackoff
- public round functions
 - \Rightarrow indifferentiability framework [MRH04]

- building cryptographic permutations from cryptographic functions: the *r*-round Feistel construction Ψ_r
- round functions = random oracles **F**
- does the Feistel construction Ψ^F_r "behave" as a random permutation **P**?
- secret round functions
 ⇒ Luby-Rackoff
- public round functions
 - \Rightarrow indifferentiability framework [MRH04]

(B)

- building cryptographic permutations from cryptographic functions: the *r*-round Feistel construction Ψ_r
- round functions = random oracles **F**
- does the Feistel construction Ψ^F_r "behave" as a random permutation **P**?
- secret round functions
 ⇒ Luby-Rackoff
- public round functions
 - \Rightarrow indifferentiability framework [MRH04]

(L, R)

P

(S, T)

(B)

- building cryptographic permutations from cryptographic functions: the *r*-round Feistel construction Ψ_r
- round functions = random oracles **F**
- does the Feistel construction Ψ^F_r "behave" as a random permutation **P**?
- secret round functions \Rightarrow Luby-Rackoff
- public round functions
 - \Rightarrow indifferentiability framework [MRH04]

(L, R)

P

(S, T)

- building cryptographic permutations from cryptographic functions: the *r*-round Feistel construction Ψ_r
- round functions = random oracles **F**
- does the Feistel construction Ψ^F_r "behave" as a random permutation **P**?
- secret round functions
 ⇒ Luby-Rackoff
- public round functions
 - \Rightarrow indifferentiability framework [MRH04]

(L, R)

Р

(S, T)

In this talk

• we consider weaker notions of indifferentiability:

- public indifferentiability
- sequential indifferentiability

and show them to be equivalent

- we show that the Feistel construction with 6 rounds is publicly indifferentiable from a random permutation (14 rounds best known result for full indifferentiability [HKT11])
- we link the notion of public indifferentiability with the notion of correlation intractability of [CGH98]

< □ > < □ > < □ > < □ > < □ > < □ >

In this talk

- we consider weaker notions of indifferentiability:
 - public indifferentiability
 - sequential indifferentiability

and show them to be equivalent

- we show that the Feistel construction with 6 rounds is publicly indifferentiable from a random permutation (14 rounds best known result for full indifferentiability [HKT11])
- we link the notion of public indifferentiability with the notion of correlation intractability of [CGH98]

A B + A B +

In this talk

- we consider weaker notions of indifferentiability:
 - public indifferentiability
 - sequential indifferentiability

and show them to be equivalent

- we show that the Feistel construction with 6 rounds is publicly indifferentiable from a random permutation (14 rounds best known result for full indifferentiability [HKT11])
- we link the notion of public indifferentiability with the notion of correlation intractability of [CGH98]

Outline

э

< A

Outline

Public and Sequential Indifferentiability

The classical indistinguishability notion

• the distinguisher cannot access the round functions.

• Luby-Rackoff theorem: Ψ_3 is indist. from a random permutation, Ψ_4 is indist. from an invertible random permutation

Public and Sequential Indifferentiability

The classical indistinguishability notion

- the distinguisher cannot access the round functions.
- Luby-Rackoff theorem: Ψ_3 is indist. from a random permutation, Ψ_4 is indist. from an invertible random permutation

- Ψ_r^F is indifferentiable from P is there exists an (efficient) simulator S such that (P, S^P) and (Ψ_r^F, F) are indist.
- the simulator does not know \mathcal{D} 's queries to \boldsymbol{P}
- best known result for Feistel: 14 rounds [HKT11]

• Ψ_r^F is indifferentiable from P is there exists an (efficient) simulator S such that (P, S^P) and (Ψ_r^F, F) are indist.

- the simulator does not know \mathcal{D} 's queries to \boldsymbol{P}
- best known result for Feistel: 14 rounds [HKT11]

- Ψ_r^F is indifferentiable from P is there exists an (efficient) simulator S such that (P, S^P) and (Ψ_r^F, F) are indist.
- the simulator does not know \mathcal{D} 's queries to \boldsymbol{P}
- best known result for Feistel: 14 rounds [HKT11]

- Ψ_r^F is indifferentiable from P is there exists an (efficient) simulator S such that (P, S^P) and (Ψ_r^F, F) are indist.
- \bullet the simulator does not know $\mathcal{D}{}^{\prime}s$ queries to $\boldsymbol{\textit{P}}$
- best known result for Feistel: 14 rounds [HKT11]

• an attacker \mathcal{A} against cryptosystem Γ used with $\Psi_r^{\mathbf{F}}$...

- . . . implies an attacker \mathcal{A}' against Γ used with \boldsymbol{P}
- true for single-stage security games only [RSS11]

• an attacker \mathcal{A} against cryptosystem Γ used with $\Psi_r^{\mathbf{F}}$...

- . . . implies an attacker \mathcal{A}' against Γ used with \boldsymbol{P}
- true for single-stage security games only [RSS11]

• an attacker \mathcal{A} against cryptosystem Γ used with $\Psi_r^{\mathbf{F}}$...

 \bullet . . . implies an attacker \mathcal{A}' against Γ used with \boldsymbol{P}

• true for single-stage security games only [RSS11]

• an attacker \mathcal{A} against cryptosystem Γ used with $\Psi_r^{\mathbf{F}}$...

 \bullet . . . implies an attacker \mathcal{A}' against Γ used with \boldsymbol{P}

• true for single-stage security games only [RSS11]

• an attacker \mathcal{A} against cryptosystem Γ used with $\Psi_r^{\mathbf{F}}$...

- \bullet . . . implies an attacker \mathcal{A}' against Γ used with $\boldsymbol{\textit{P}}$
- true for single-stage security games only [RSS11]

Public indifferentiability [YMO09,DRS09]

 \bullet weaker notion where the simulator is given all queries made by ${\cal D}$ to ${\pmb P}$

composition theorem still holds for cryptosystems where all queries to *P* can be revealed to the adversary without affecting security (*e.g.* "hash-and-sign" signature schemes)

Public indifferentiability [YMO09,DRS09]

• weaker notion where the simulator is given all queries made by ${\cal D}$ to ${\pmb P}$

composition theorem still holds for cryptosystems where all queries to *P* can be revealed to the adversary without affecting security (*e.g.* "hash-and-sign" signature schemes)

Public indifferentiability [YMO09,DRS09]

ullet weaker notion where the simulator is given all queries made by ${\cal D}$ to ${m P}$

composition theorem still holds for cryptosystems where all queries to *P* can be revealed to the adversary without affecting security (*e.g.* "hash-and-sign" signature schemes)

The distinguisher can:

- query $\mathcal{S}^{\boldsymbol{P}}/\boldsymbol{F}$ in a first phase
- 2 query $\boldsymbol{P}/\Psi_r^{\boldsymbol{F}}$ in a second phase, but not $\mathcal{S}^{\boldsymbol{P}}/\boldsymbol{F}$ any more
- Inot intrinsically interesting, tool to prove public indiff.

The distinguisher can:

- query $\mathcal{S}^{\boldsymbol{P}}/\boldsymbol{F}$ in a first phase
- 2 query P/Ψ_r^F in a second phase, but not \mathcal{S}^P/F any more
- Inot intrinsically interesting, tool to prove public indiff.

The distinguisher can:

- query $\mathcal{S}^{\boldsymbol{P}}/\boldsymbol{F}$ in a first phase
- **2** query $\boldsymbol{P}/\Psi_r^{\boldsymbol{F}}$ in a second phase, but not $\mathcal{S}^{\boldsymbol{P}}/\boldsymbol{F}$ any more
- Inot intrinsically interesting, tool to prove public indiff.

The distinguisher can:

- query $\mathcal{S}^{\boldsymbol{P}}/\boldsymbol{F}$ in a first phase
- **2** query $\boldsymbol{P}/\Psi_r^{\boldsymbol{F}}$ in a second phase, but not $\mathcal{S}^{\boldsymbol{P}}/\boldsymbol{F}$ any more
- ont intrinsically interesting, tool to prove public indiff.

- **P** is stateless = its answers are independent of the order of queries it receives
- NB: an invertible random permutation is stateless
- pub-indiff \Rightarrow seq-indiff: obvious (in the seq-indiff. game, the simulator is done once the distinguisher makes its first query to P)
- seq-indiff \Rightarrow pub-indiff for stateless ideal primitives P
- idea of the proof: starting from a simulator S_{seq} for seq-indiff., one builds a simulator S_{pub} which emulates all queries of the distinguisher to \boldsymbol{P} by calling $\Psi_r^{S_{seq}^P}$.
- counterexample (in the computational case) when *P* is stateful [Ristenpart]

11 / 24

イロト 不得 トイヨト イヨト 二日

- **P** is stateless = its answers are independent of the order of queries it receives
- NB: an invertible random permutation is stateless
- pub-indiff \Rightarrow seq-indiff: obvious (in the seq-indiff. game, the simulator is done once the distinguisher makes its first query to P)
- seq-indiff \Rightarrow pub-indiff for stateless ideal primitives P
- idea of the proof: starting from a simulator S_{seq} for seq-indiff., one builds a simulator S_{pub} which emulates all queries of the distinguisher to \boldsymbol{P} by calling $\Psi_r^{S_{seq}^P}$.
- counterexample (in the computational case) when *P* is stateful [Ristenpart]

11 / 24

イロト 不得下 イヨト イヨト 二日

- **P** is stateless = its answers are independent of the order of queries it receives
- NB: an invertible random permutation is stateless
- pub-indiff \Rightarrow seq-indiff: obvious (in the seq-indiff. game, the simulator is done once the distinguisher makes its first query to \boldsymbol{P})
- seq-indiff \Rightarrow pub-indiff for stateless ideal primitives **P**
- \bullet idea of the proof: starting from a simulator $\mathcal{S}_{\mathrm{seq}}$ for seq-indiff., one builds a simulator $\mathcal{S}_{\mathrm{pub}}$ which emulates all queries of the distinguisher to **P** by calling $\Psi_r^{\mathcal{S}_{seq}^{P}}$.
- counterexample (in the computational case) when **P** is stateful

- **P** is stateless = its answers are independent of the order of queries it receives
- NB: an invertible random permutation is stateless
- pub-indiff \Rightarrow seq-indiff: obvious (in the seq-indiff. game, the simulator is done once the distinguisher makes its first query to \boldsymbol{P})
- seq-indiff \Rightarrow pub-indiff for stateless ideal primitives **P**
- \bullet idea of the proof: starting from a simulator $\mathcal{S}_{\mathrm{seq}}$ for seq-indiff., one builds a simulator $\mathcal{S}_{\mathrm{pub}}$ which emulates all queries of the distinguisher to **P** by calling $\Psi_r^{\mathcal{S}_{seq}^{P}}$.
- counterexample (in the computational case) when **P** is stateful

- **P** is stateless = its answers are independent of the order of queries it receives
- NB: an invertible random permutation is stateless
- pub-indiff ⇒ seq-indiff: obvious (in the seq-indiff. game, the simulator is done once the distinguisher makes its first query to P)
- seq-indiff \Rightarrow pub-indiff for stateless ideal primitives P
- idea of the proof: starting from a simulator S_{seq} for seq-indiff., one builds a simulator S_{pub} which emulates all queries of the distinguisher to \boldsymbol{P} by calling $\Psi_r^{S_{seq}^{P}}$.
- counterexample (in the computational case) when *P* is stateful [Ristenpart]

- **P** is stateless = its answers are independent of the order of queries it receives
- NB: an invertible random permutation is stateless
- pub-indiff \Rightarrow seq-indiff: obvious (in the seq-indiff. game, the simulator is done once the distinguisher makes its first query to \boldsymbol{P})
- seq-indiff \Rightarrow pub-indiff for stateless ideal primitives **P**
- \bullet idea of the proof: starting from a simulator \mathcal{S}_{seq} for seq-indiff., one builds a simulator S_{pub} which emulates all queries of the distinguisher to \boldsymbol{P} by calling $\Psi_r^{\mathcal{S}_{seq}^{\boldsymbol{P}}}$
- counterexample (in the computational case) when **P** is stateful [Ristenpart]

Outline

Public Indifferentiability of the 6-Round Feistel Construction

< 47 ▶

э
For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

 X_{12}

March 20, TCC 2012

E 6 4 E 6

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

 X_{12}

March 20, TCC 2012

4 3 5 4 3 5 5

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

March 20, TCC 2012

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

March 20, TCC 2012

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

March 20, TCC 2012

• For Ψ_5 , it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

March 20, TCC 2012

13 / 24

R

X

V

Z

S

Т

• For Ψ_5 , it is possible to find four inputs /outputs such that

 $R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0$ $S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0$

- impossible for a random
- \Rightarrow the simulator cannot be coherent with P
- the distinguisher is sequential

March 20, TCC 2012

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

< □ > < @ >

→ ◆ ≥ ▶ ◆ ≥ ▶
March 20, TCC 2012

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- ⇒ the simulator cannot be coherent with *P*
- the distinguisher is sequential

March 20, TCC 2012

★ ∃ ► < ∃ ►</p>

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- \Rightarrow the simulator cannot be coherent with P

• the distinguisher is sequential

March 20, TCC 2012

★ ∃ ► < ∃ ►</p>

 For Ψ₅, it is possible to find four inputs /outputs such that

 $\begin{cases} R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0\\ S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0 \end{cases}$

- impossible for a random permutation
- \Rightarrow the simulator cannot be coherent with P
- the distinguisher is sequential

March 20, TCC 2012

(B)

• the simulator must return answers:

• coherent with **P**:

$$\forall L, R, \Psi_6(L, R) = \boldsymbol{P}(L, R)$$

- indist. from uniformly random
- the simulator maintains an history of answers for each *F_i*
- it completes in advance the Feistel for all centers (Y, Z) ∈ F₃ × F₄ in the history, adapting some round function values to match the random permutation

• the simulator must return answers:

• coherent with **P**:

 $\forall L, R, \Psi_6(L, R) = \boldsymbol{P}(L, R)$

- indist. from uniformly random
- the simulator maintains an history of answers for each *F_i*
- it completes in advance the Feistel for all centers (Y, Z) ∈ F₃ × F₄ in the history, adapting some round function values to match the random permutation

(L, R)

Р

• the simulator must return answers:

o coherent with P:

$$\forall L, R, \Psi_6(L, R) = \boldsymbol{P}(L, R)$$

• indist. from uniformly random

- the simulator maintains an history of answers for each *F_i*
- it completes in advance the Feistel for all centers (Y, Z) ∈ F₃ × F₄ in the history, adapting some round function values to match the random permutation

(L, R)

Р

• the simulator must return answers:

o coherent with P:

$$\forall L, R, \Psi_6(L, R) = \boldsymbol{P}(L, R)$$

- indist. from uniformly random
- the simulator maintains an history of answers for each *F_i*
- it completes in advance the Feistel for all centers (Y, Z) ∈ F₃ × F₄ in the history, adapting some round function values to match the random permutation

(L, R)

Р

• the simulator must return answers:

• coherent with **P**:

$$\forall L, R, \Psi_6(L, R) = \boldsymbol{P}(L, R)$$

- indist. from uniformly random
- the simulator maintains an history of answers for each *F_i*
- it completes in advance the Feistel for all centers (Y, Z) ∈ F₃ × F₄ in the history, adapting some round function values to match the random permutation

(L, R)

Р

When receiving a query for $F_3(Y)$, the simulator:

- sets $F_3(Y)$ unif. at random
- for all $Z \in F_4$, it completes the chain (Y, Z):
 - compute $X = Z \oplus F_3(Y)$
 - compute A, S, 7
 - query $(L, R) = P^{-1}(S, T)$
 - adapt $F_1(R)$ and $F_2(X)$

$$\begin{cases} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{cases}$$

so that $\Psi_6(L,R)=oldsymbol{P}(L,R)$

Symmetric for a query $F_4(Z)$ \rightarrow adapt $F_5(A)$ and $F_6(S)$

イロト 不得 トイヨト イヨト

3

When receiving a query for $F_3(Y)$, the simulator:

- sets $F_3(Y)$ unif. at random
- for all $Z \in F_4$, it completes the chain (Y, Z):
 - compute $X = Z \oplus F_3(Y)$
 - compute A, S, 7

• query
$$(L, R) = P^{-1}(S, T)$$

• adapt $F_1(R)$ and $F_2(X)$

$$\begin{cases} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{cases}$$

so that $\Psi_6(L,R)=oldsymbol{P}(L,R)$

Symmetric for a query $F_4(Z)$ \rightarrow adapt $F_5(A)$ and $F_6(S)$

イロト イヨト イヨト ・

When receiving a query for $F_3(Y)$, the simulator:

- sets $F_3(Y)$ unif. at random
- for all $Z \in F_4$, it completes the chain (Y, Z):
 - compute $X = Z \oplus F_3(Y)$
 - compute A, S, T
 - query $(L, R) = P^{-1}(S, T)$
 - adapt $F_1(R)$ and $F_2(X)$:

$$\begin{bmatrix} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{bmatrix}$$

so that $\Psi_6(L, R) = \mathbf{P}(L, R)$ Symmetric for a query $F_4(Z)$ \rightarrow adapt $F_5(A)$ and $F_6(S)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When receiving a query for $F_3(Y)$, the simulator:

- sets $F_3(Y)$ unif. at random
- for all $Z \in F_4$, it completes the chain (Y, Z):
 - compute $X = Z \oplus F_3(Y)$
 - compute A, S, T
 - query $(L, R) = P^{-1}(S, T)$
 - adapt $F_1(R)$ and $F_2(X)$:

$$\begin{bmatrix} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{bmatrix}$$

so that $\Psi_6(L, R) = \mathbf{P}(L, R)$ Symmetric for a query $F_4(Z)$ \rightarrow adapt $F_5(A)$ and $F_6(S)$

March 20, TCC 2012

15 / 24

When receiving a query for $F_3(Y)$, the simulator:

- sets $F_3(Y)$ unif. at random
- for all $Z \in F_4$, it completes the chain (Y, Z):
 - compute $X = Z \oplus F_3(Y)$
 - compute A, S, T
 - query $(L, R) = \mathbf{P}^{-1}(S, T)$
 - adapt $F_1(R)$ and $F_2(X)$:

$$\begin{bmatrix} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{bmatrix}$$

so that $\Psi_6(L, R) = \mathbf{P}(L, R)$ Symmetric for a query $F_4(Z)$ \rightarrow adapt $F_5(A)$ and $F_6(S)$

▲ □ ▶ ▲ ○ ▶ ▲ ○ ▶ ▲ ○ ▶ ▲ ○ ▶
 March 20, TCC 2012

When receiving a query for $F_3(Y)$, the simulator:

- sets $F_3(Y)$ unif. at random
- for all $Z \in F_4$, it completes the chain (Y, Z):
 - compute $X = Z \oplus F_3(Y)$
 - compute A, S, T
 - query $(L, R) = \mathbf{P}^{-1}(S, T)$ • adapt $F_1(R)$ and $F_2(X)$:

$$\begin{cases} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{cases}$$

so that $\Psi_6(L, R) = \mathbf{P}(L, R)$ Symmetric for a query $F_4(Z)$ \rightarrow adapt $F_5(A)$ and $F_6(S)$

When receiving a query for $F_3(Y)$, the simulator:

- sets $F_3(Y)$ unif. at random
- for all $Z \in F_4$, it completes the chain (Y, Z):
 - compute $X = Z \oplus F_3(Y)$
 - compute A, S, T
 - query $(L, R) = P^{-1}(S, T)$
 - adapt F₁(R) and F₂(X):

$$\left(\begin{array}{c}F_1(R)=L\oplus X\\F_2(X)=R\oplus Y\end{array}\right)$$

so that $\Psi_6(L,R) = \boldsymbol{P}(L,R)$

Symmetric for a query $F_4(Z)$ \rightarrow adapt $F_5(A)$ and $F_6(S)$

When receiving a query for $F_3(Y)$, the simulator:

- sets $F_3(Y)$ unif. at random
- for all $Z \in F_4$, it completes the chain (Y, Z):
 - compute $X = Z \oplus F_3(Y)$
 - compute A, S, T
 - query $(L, R) = P^{-1}(S, T)$
 - adapt F₁(R) and F₂(X):

$$\left(\begin{array}{c}F_1(R)=L\oplus X\\F_2(X)=R\oplus Y\end{array}\right)$$

so that $\Psi_6(L, R) = \mathbf{P}(L, R)$ Symmetric for a query $F_4(Z)$ \rightarrow adapt $F_5(A)$ and $F_6(S)$

Indifferentiability proof

Two main points in the indifferentiability proof:

- the simulator is polynomial-time
- ② the simulator can always adapt round function values $(F_1(R), F_2(X))$ or $(F_5(A), F_6(S))$

(L, R)

Р

(S, T)

4 E 5

Indifferentiability proof

Two main points in the indifferentiability proof:

- the simulator is polynomial-time
- the simulator can always adapt round function values $(F_1(R), F_2(X))$ or $(F_5(A), F_6(S))$

Р

Indifferentiability proof

Two main points in the indifferentiability proof:

- the simulator is polynomial-time
- the simulator can always adapt round function values (F₁(R), F₂(X)) or (F₅(A), F₆(S))

(L, R)

Р

If the distinguisher makes at most q queries, then:

- the size of history of F_3 and F_4 is at most q
- the simulator completes at most q^2 centers (Y, Z)
- the size of history of F_1 , F_2 , F_5 , F_6 is at most $q^2 + q$
- the simulator makes at most q^2 queries to ${\it P}$

< □ > < □ > < □ > < □ > < □ > < □ >

If the distinguisher makes at most q queries, then:

- the size of history of F_3 and F_4 is at most q
- the simulator completes at most q^2 centers (Y, Z)
- the size of history of F_1 , F_2 , F_5 , F_6 is at most $q^2 + q$
- the simulator makes at most q^2 queries to ${\it P}$

If the distinguisher makes at most q queries, then:

- the size of history of F_3 and F_4 is at most q
- the simulator completes at most q^2 centers (Y, Z)
- the size of history of F_1 , F_2 , F_5 , F_6 is at most $q^2 + q$
- the simulator makes at most q^2 queries to ${\it P}$

If the distinguisher makes at most q queries, then:

- the size of history of F_3 and F_4 is at most q
- the simulator completes at most q^2 centers (Y, Z)
- the size of history of F_1 , F_2 , F_5 , F_6 is at most $q^2 + q$
- the simulator makes at most q^2 queries to ${\pmb P}$

If the distinguisher makes at most q queries, then:

- the size of history of F_3 and F_4 is at most q
- the simulator completes at most q^2 centers (Y, Z)
- the size of history of F_1 , F_2 , F_5 , F_6 is at most $q^2 + q$
- the simulator makes at most q^2 queries to ${m P}$

The simulator can always adapt

When completing a center (Y, Z) after a query for $F_3(Y)$:

- $X = Z \oplus F_3(Y)$, where $F_3(Y)$ is unif. random $\Rightarrow X \in F_2$ with negl. probability only
- (L, R) are obtained by querying

 $(\boldsymbol{L},\boldsymbol{R})=\boldsymbol{P}^{-1}(\boldsymbol{S},\boldsymbol{T})$

- $\Rightarrow L \text{ and } R \text{ are close to unif. random} \\ \Rightarrow R \in F_1 \text{ with negl. probability only}$
- $F_1(R)$ and $F_2(X)$ are close to unif. random:

$$\begin{cases} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{cases}$$

18 / 24

イロト 不得 トイラト イラト 一日

The simulator can always adapt

When completing a center (Y, Z) after a query for $F_3(Y)$:

• $X = Z \oplus F_3(Y)$, where $F_3(Y)$ is unif. random $\Rightarrow X \in F_2$ with negl. probability only

• (L, R) are obtained by querying

 $(\boldsymbol{L},\boldsymbol{R})=\boldsymbol{P}^{-1}(\boldsymbol{S},\boldsymbol{T})$

 \Rightarrow L and R are close to unif. random \Rightarrow R \in F₁ with negl. probability only

• $F_1(R)$ and $F_2(X)$ are close to unif. random:

$$\begin{cases} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{cases}$$

18 / 24

イロト イヨト イヨト ・
The simulator can always adapt

When completing a center (Y, Z) after a query for $F_3(Y)$:

- $X = Z \oplus F_3(Y)$, where $F_3(Y)$ is unif. random $\Rightarrow X \in F_2$ with negl. probability only
- (L, R) are obtained by querying

$$(\boldsymbol{L},\boldsymbol{R})=\boldsymbol{P}^{-1}(\boldsymbol{S},\boldsymbol{T})$$

- $\Rightarrow L \text{ and } R \text{ are close to unif. random} \\ \Rightarrow R \in F_1 \text{ with negl. probability only}$
- $F_1(R)$ and $F_2(X)$ are close to unif. random:

$$\begin{cases} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{cases}$$

18 / 24

The simulator can always adapt

When completing a center (Y, Z) after a query for $F_3(Y)$:

- $X = Z \oplus F_3(Y)$, where $F_3(Y)$ is unif. random $\Rightarrow X \in F_2$ with negl. probability only
- (L, R) are obtained by querying

$$(\boldsymbol{L},\boldsymbol{R})=\boldsymbol{P}^{-1}(\boldsymbol{S},\boldsymbol{T})$$

 $\Rightarrow L \text{ and } R \text{ are close to unif. random} \\ \Rightarrow R \in F_1 \text{ with negl. probability only}$

• $F_1(R)$ and $F_2(X)$ are close to unif. random:

$$\begin{cases} F_1(R) = L \oplus X \\ F_2(X) = R \oplus Y \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

2 Public Indifferentiability of the 6-Round Feistel Construction

Orrelation Intractability

Y. Seurin (ANSSI)

Pub. Indiff. of 6-round Feistel

March 20, TCC 2012

э

19 / 24

A D N A B N A B N A B N

Evasive relation

Definition (Evasive relation)

A relation \mathcal{R} is *evasive* for ideal primitive \mathbf{P} if it is hard, given BB access to \mathbf{P} , to find inputs (x_1, \ldots, x_m) such that

$$((x_1,\ldots,x_m),(\boldsymbol{P}(x_1),\ldots,\boldsymbol{P}(x_m))\in\mathcal{R}$$
 .

Exemple:

$$\mathcal{R} = \{((L \| 0^n), (S \| 0^n)) : L \in \{0, 1\}^n, S \in \{0, 1\}^n\}$$

is evasive for a 2*n*-bit invertible random permutation.

Evasive relation

Definition (Evasive relation)

A relation \mathcal{R} is *evasive* for ideal primitive \mathbf{P} if it is hard, given BB access to \mathbf{P} , to find inputs (x_1, \ldots, x_m) such that

$$((x_1,\ldots,x_m),(\boldsymbol{P}(x_1),\ldots,\boldsymbol{P}(x_m))\in\mathcal{R}$$
 .

Exemple:

$$\mathcal{R} = \{((L \| 0^n), (S \| 0^n)) : L \in \{0, 1\}^n, S \in \{0, 1\}^n\}$$

is evasive for a 2*n*-bit invertible random permutation.

Correlation intractable construction

Definition

The construction $\Psi_r^{\boldsymbol{F}}$ is correlation intractable if for any evasive relation \mathcal{R} , it is hard, given BB access to \boldsymbol{F} , to find inputs (x_1, \ldots, x_m) such that

$$((x_1,\ldots,x_m),(\Psi_r^{\mathcal{F}}(x_1),\ldots,\Psi_r^{\mathcal{F}}(x_m))\in\mathcal{R}$$
.

- analogous to the corresponding notion defined by [CGH98] in the standard model
- escapes impossibility results since the "key" F is exponentially long

21 / 24

< □ > < □ > < □ > < □ > < □ > < □ >

Correlation intractable construction

Definition

The construction $\Psi_r^{\boldsymbol{F}}$ is correlation intractable if for any evasive relation \mathcal{R} , it is hard, given BB access to \boldsymbol{F} , to find inputs (x_1, \ldots, x_m) such that

$$((x_1,\ldots,x_m),(\Psi_r^{\mathcal{F}}(x_1),\ldots,\Psi_r^{\mathcal{F}}(x_m))\in\mathcal{R}$$
.

- analogous to the corresponding notion defined by [CGH98] in the standard model
- escapes impossibility results since the "key" F is exponentially long

- 4 回 ト 4 ヨ ト 4 ヨ ト

Correlation intractable construction

Definition

The construction $\Psi_r^{\boldsymbol{F}}$ is correlation intractable if for any evasive relation \mathcal{R} , it is hard, given BB access to \boldsymbol{F} , to find inputs (x_1, \ldots, x_m) such that

$$((x_1,\ldots,x_m),(\Psi_r^{\mathcal{F}}(x_1),\ldots,\Psi_r^{\mathcal{F}}(x_m))\in\mathcal{R}$$
.

- analogous to the corresponding notion defined by [CGH98] in the standard model
- ullet escapes impossibility results since the "key" $m{F}$ is exponentially long

Public indiff. implies correlation intractability

Theorem

If $\Psi_r^{\mathbf{F}}$ is pub-indiff. from \mathbf{P} , then it is correlation intractable.

The converse does not hold.

Corollary

The 6-round Feistel construction yields a correlation intractable permutation.

NB: this implies that full indiff. for 6 rounds cannot be disproved similarly to the 5-round case (by finding an evasive relation).

Public indiff. implies correlation intractability

Theorem

If $\Psi_r^{\mathbf{F}}$ is pub-indiff. from \mathbf{P} , then it is correlation intractable.

The converse does not hold.

Corollary

The 6-round Feistel construction yields a correlation intractable permutation.

NB: this implies that full indiff. for 6 rounds cannot be disproved similarly to the 5-round case (by finding an evasive relation).

Public indiff. implies correlation intractability

Theorem

If $\Psi_r^{\mathbf{F}}$ is pub-indiff. from \mathbf{P} , then it is correlation intractable.

The converse does not hold.

Corollary

The 6-round Feistel construction yields a correlation intractable permutation.

NB: this implies that full indiff. for 6 rounds cannot be disproved similarly to the 5-round case (by finding an evasive relation).

A B < A B </p>

Sec. Notion	# Feistel rounds
PRP	3
SPRP	4
Correlation intract.	6
Public indiff.	6
Full indiff.	$6 \le r \le 14$

Open questions:

- minimal number of rounds for full indifferentiability?
- weaker assumptions for the round functions?
- application of seq-indiff. to hash function constructions

イロト イポト イヨト イヨト

Sec. Notion	# Feistel rounds
PRP	3
SPRP	4
Correlation intract.	6
Public indiff.	6
Full indiff.	$6 \le r \le 14$

Open questions:

- minimal number of rounds for full indifferentiability?
- weaker assumptions for the round functions?
- application of seq-indiff. to hash function constructions

イロト イポト イヨト イヨト

Sec. Notion	# Feistel rounds
PRP	3
SPRP	4
Correlation intract.	6
Public indiff.	6
Full indiff.	$6 \le r \le 14$

Open questions:

- minimal number of rounds for full indifferentiability?
- weaker assumptions for the round functions?
- application of seq-indiff. to hash function constructions

Sec. Notion	# Feistel rounds
PRP	3
SPRP	4
Correlation intract.	6
Public indiff.	6
Full indiff.	$6 \le r \le 14$

Open questions:

- minimal number of rounds for full indifferentiability?
- weaker assumptions for the round functions?
- application of seq-indiff. to hash function constructions

Sec. Notion	# Feistel rounds
PRP	3
SPRP	4
Correlation intract.	6
Public indiff.	6
Full indiff.	$6 \le r \le 14$

Open questions:

- minimal number of rounds for full indifferentiability?
- weaker assumptions for the round functions?
- application of seq-indiff. to hash function constructions

3

Thanks

Thanks for your attention! Comments or questions?

Y. Seurin (ANSSI)

Pub. Indiff. of 6-round Feistel

March 20, TCC 2012

< A I

A B A A B A