Bitcoin Script Schnorr Taproot Scriptless Scripts Discreet Log Contracts Conclu

More Schnorr Tricks for Bitcoin

Yannick Seurin

Agence nationale de la sécurité des systèmes d'information

November 22, 2018 — "BlockSem" Seminar

Y. Seurin (ANSSI)

- Bitcoin script allows to specify (pretty sophisticated) conditions for spending a transaction output
- allows very nice applications, but:
 - scripts are recorded forever in the blockchain
 a goes against space efficiency and privacy
 - → goes against space efficiency and privat
 - Scripts must be validated by all nodes → goes against computational efficiency
 - coins have a distinguished "history"
 - \rightarrow goes against fungibility (all coins should be "equivalent")
- we will see how Schnorr signatures can help make things better

- Bitcoin script allows to specify (pretty sophisticated) conditions for spending a transaction output
- allows very nice applications, but:
 - scripts are recorded forever in the blockchain \rightarrow goes against space efficiency and privacy
 - scripts must be validated by all nodes
 → goes against computational efficiency
 - coins have a distinguished "history"
 - \rightarrow goes against fungibility (all coins should be "equivalent")
- we will see how Schnorr signatures can help make things better

- Bitcoin script allows to specify (pretty sophisticated) conditions for spending a transaction output
- allows very nice applications, but:
 - scripts are recorded forever in the blockchain
 → goes against space efficiency and privacy
 - scripts must be validated by all nodes
 - ightarrow goes against computational efficiency
 - coins have a distinguished "history"
 - \rightarrow goes against fungibility (all coins should be "equivalent")
- we will see how Schnorr signatures can help make things better

- Bitcoin script allows to specify (pretty sophisticated) conditions for spending a transaction output
- allows very nice applications, but:
 - scripts are recorded forever in the blockchain
 → goes against space efficiency and privacy
 - scripts must be validated by all nodes
 - \rightarrow goes against computational efficiency
 - coins have a distinguished "history"
 → goes against fungibility (all coins should be "equivalent")
- we will see how Schnorr signatures can help make things better

- Bitcoin script allows to specify (pretty sophisticated) conditions for spending a transaction output
- allows very nice applications, but:
 - scripts are recorded forever in the blockchain
 → goes against space efficiency and privacy
 - scripts must be validated by all nodes
 - \rightarrow goes against computational efficiency
 - coins have a distinguished "history"
 - \rightarrow goes against fungibility (all coins should be "equivalent")

• we will see how Schnorr signatures can help make things better

- Bitcoin script allows to specify (pretty sophisticated) conditions for spending a transaction output
- allows very nice applications, but:
 - scripts are recorded forever in the blockchain
 → goes against space efficiency and privacy
 - scripts must be validated by all nodes
 - \rightarrow goes against computational efficiency
 - coins have a distinguished "history"
 - ightarrow goes against fungibility (all coins should be "equivalent")
- we will see how Schnorr signatures can help make things better

Refresher: Schnorr Signatures and MuSig

Taproot

Scriptless Scripts

Discreet Log Contracts

Conclusion

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 3 / 40

Refresher: Schnorr Signatures and MuSig

Taproot

Scriptless Scripts

Discreet Log Contracts

Conclusion

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 4 / 40

orr

root

Bitcoin transactions: UTXO model

A Bitcoin transaction spends inputs and creates outputs:

- an input consists of a reference to an output of a previous transaction and a signature authorizing spending of this output
- an output consists of an amount and a public key

(txid: e62b0a)							
Inputs	Outputs						

Y. Seurin (ANSSI)

orr

proot

Bitcoin transactions: UTXO model

A Bitcoin transaction spends inputs and creates outputs:

- an input consists of a reference to an output of a previous transaction and a signature authorizing spending of this output
- an output consists of an amount and a public key

Y. Seurin (ANSSI)

orr

proot

Bitcoin transactions: UTXO model

A Bitcoin transaction spends inputs and creates outputs:

- an input consists of a reference to an output of a previous transaction and a signature authorizing spending of this output
- an output consists of an amount and a public key

Programmable money: Bitcoin script

- output public keys and input signatures are actually scripts
- output: scriptPubKey, input: scriptSig
- concatenated script scriptSig || scriptPubKey must execute correctly
- stack-based language designed for Bitcoin, inspired by Forth
- 256 instructions (15 disabled, 75 reserved):
 - basic arithmetic, logic (if/then), data handling
 - cryptographic operations (hash and signature verification)
- no loops, Turing-incomplete
- limits on time/memory required for execution (no halting problem)

rr

oot

criptless Scripts

Discreet Log Contracts

Conclusion

Example: Pay-to-Public-Key-Hash (P2PKH)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 7 / 40

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 7 / 40

(sig) (pubKey)	OP_DUP	OP_HASH160	$\langle pubKeyHash \rangle$	OP_EQUALVERIFY	OP_CHECKSIG
scriptSig			scriptPub	Кеу	

Example: *Pay-to-Public-Key-Hash* (P2PKH)

(sig) (pubKey)	OP_DUP	OP_HASH160	$\langle pubKeyHash \rangle$	OP_EQUALVERIFY	OP_CHECKSIG
scriptSig			scriptPub	Кеу	

$\langle $	pubKeyHash'
	<pre></pre>
	$\langle sig \rangle$

(sig) (pubKey)	OP_DUP	OP_HASH160	$\langle pubKeyHash \rangle$	OP_EQUALVERIFY	OP_CHECKSIG
scriptSig			scriptPub	Кеу	

(sig/ (pubicey/	<u> </u>	(pubicey lash)		
	-	\sim		
scriptSig		scriptPut	oKey	

(sig) (pubKey)	OP_DUP	OP_HASH160	$\langle pubKeyHash \rangle$	OP_EQUALVERIFY	OP_CHECKSIG
scriptSig			scriptPub	Key	

⟨sig⟩ ⟨pubKey⟩	OP_DUP	OP_HASH160	$\langle pubKeyHash \rangle$	OP_EQUALVERIFY	OP_CHECKSIG
scriptSig			scriptPub	бКеу	

 Bitcoin "address" = RIPEMD-160(SHA-256(public key)) encoded in Base58Check format (starts with a '1')

Y. Seurin (ANSSI)

hnorr

proot

Scriptless Scripts

Conclusion

Other useful instructions

m-of-*n* MULTISIG:

- scriptPubKey contains n public keys
- scriptSig must provide m ≤ n valid signatures for m out of n of these public keys
- many applications (multi-authentication wallet, escrow, etc.)

• OP_RETURN:

- makes output unspendable
- used to put arbitrary data in the blockchain.

• Lock-time:

- output unspendable until some time in the future
- absolute (CLTV) or relative (CSV)
- application: payment channels, Lightning Network

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 8 / 40

chnorr

proot

Scriptless Script

Other useful instructions

• *m*-of-*n* MULTISIG:

• scriptPubKey contains n public keys

- scriptSig must provide m ≤ n valid signatures for m out of n of these public keys
- many applications (multi-authentication wallet, escrow, etc.)

• OP_RETURN:

- makes output unspendable
- used to put arbitrary data in the blockchain

• Lock-time:

- output unspendable until some time in the future
- absolute (CLTV) or relative (CSV)
- application: payment channels, Lightning Network

Y. Seurin (ANSSI)

chnorr

proot

Scriptless Script

Conclusion

Other useful instructions

• *m*-of-*n* MULTISIG:

- scriptPubKey contains *n* public keys
- scriptSig must provide $m \le n$ valid signatures for m out of n of these public keys
- many applications (multi-authentication wallet, escrow, etc.)

• OP_RETURN:

- makes output unspendable
- used to put arbitrary data in the blockchain

• Lock-time:

- output unspendable until some time in the future
- absolute (CLTV) or relative (CSV)
- application: payment channels, Lightning Network

Y. Seurin (ANSSI)

chnorr

proot

Scriptless Script

Conclusion

Other useful instructions

m-of-*n* MULTISIG:

- scriptPubKey contains *n* public keys
- scriptSig must provide m ≤ n valid signatures for m out of n of these public keys
- many applications (multi-authentication wallet, escrow, etc.)

• OP_RETURN:

- makes output unspendable
- used to put arbitrary data in the blockchain

Lock-time:

- output unspendable until some time in the future
- absolute (CLTV) or relative (CSV)
- application: payment channels, Lightning Network

Y. Seurin (ANSSI)

• *m*-of-*n* MULTISIG:

- scriptPubKey contains *n* public keys
- scriptSig must provide $m \le n$ valid signatures for m out of n of these public keys
- many applications (multi-authentication wallet, escrow, etc.)

• OP_RETURN:

- makes output unspendable
- used to put arbitrary data in the blockchain

• Lock-time:

- output unspendable until some time in the future
- absolute (CLTV) or relative (CSV)
- application: payment channels, Lightning Network

Y. Seurin (ANSSI)

- *m*-of-*n* MULTISIG:
 - scriptPubKey contains *n* public keys
 - scriptSig must provide $m \le n$ valid signatures for m out of n of these public keys
 - many applications (multi-authentication wallet, escrow, etc.)
- OP_RETURN:
 - makes output unspendable
 - used to put arbitrary data in the blockchain
- Lock-time:
 - output unspendable until some time in the future
 - absolute (CLTV) or relative (CSV)
 - application: payment channels, Lightning Network

Y. Seurin (ANSSI)

- *m*-of-*n* MULTISIG:
 - scriptPubKey contains *n* public keys
 - scriptSig must provide $m \le n$ valid signatures for m out of n of these public keys
 - many applications (multi-authentication wallet, escrow, etc.)
- OP_RETURN:
 - makes output unspendable
 - used to put arbitrary data in the blockchain

Lock-time:

- output unspendable until some time in the future
- absolute (CLTV) or relative (CSV)
- application: payment channels, Lightning Network

Y. Seurin (ANSSI)

- *m*-of-*n* MULTISIG:
 - scriptPubKey contains *n* public keys
 - scriptSig must provide $m \le n$ valid signatures for m out of n of these public keys
 - many applications (multi-authentication wallet, escrow, etc.)
- OP_RETURN:
 - makes output unspendable
 - used to put arbitrary data in the blockchain
- Lock-time:
 - output unspendable until some time in the future
 - absolute (CLTV) or relative (CSV)
 - application: payment channels, Lightning Network

Y. Seurin (ANSSI)

- *m*-of-*n* MULTISIG:
 - scriptPubKey contains *n* public keys
 - scriptSig must provide $m \le n$ valid signatures for m out of n of these public keys
 - many applications (multi-authentication wallet, escrow, etc.)
- OP_RETURN:
 - makes output unspendable
 - used to put arbitrary data in the blockchain
- Lock-time:
 - output unspendable until some time in the future
 - absolute (CLTV) or relative (CSV)
 - application: payment channels, Lightning Network

Y. Seurin (ANSSI)

- *m*-of-*n* MULTISIG:
 - scriptPubKey contains *n* public keys
 - scriptSig must provide $m \le n$ valid signatures for m out of n of these public keys
 - many applications (multi-authentication wallet, escrow, etc.)
- OP_RETURN:
 - makes output unspendable
 - used to put arbitrary data in the blockchain
- Lock-time:
 - output unspendable until some time in the future
 - absolute (CLTV) or relative (CSV)
 - application: payment channels, Lightning Network

Y. Seurin (ANSSI)

- *m*-of-*n* MULTISIG:
 - scriptPubKey contains *n* public keys
 - scriptSig must provide $m \le n$ valid signatures for m out of n of these public keys
 - many applications (multi-authentication wallet, escrow, etc.)
- OP_RETURN:
 - makes output unspendable
 - used to put arbitrary data in the blockchain
- Lock-time:
 - output unspendable until some time in the future
 - absolute (CLTV) or relative (CSV)
 - application: payment channels, Lightning Network

norr

root

Hash Time-Lock Contract (HTLC)

• Hash Time-Locked Contracts $HTLC(h, X_1, \tau, X_2)$:

 $\label{eq:op_if_op_sha256} \begin{array}{l} \langle h \rangle \mbox{ OP_EQUALVERIFY } \langle X_1 \rangle \mbox{ OP_CHECKSIG} \\ \\ \mbox{ OP_ELSE } \langle \tau \rangle \mbox{ OP_CLTV OP_DROP } \langle X_2 \rangle \mbox{ OP_CHECKSIG OP_ENDIF} \end{array}$

- in words, such a output can be spent either
 - with y such that SHA256(y) = h and a signature under X_1
 - OR after time au with a signature under X_2
- used in the Lightning Network for payment channels and routing

orr

oot

Hash Time-Lock Contract (HTLC)

• Hash Time-Locked Contracts $HTLC(h, X_1, \tau, X_2)$:

 $\label{eq:op_if_op_sha256} \begin{array}{l} \langle h \rangle \mbox{ OP_EQUALVERIFY } \langle X_1 \rangle \mbox{ OP_CHECKSIG} \\ \\ \mbox{ OP_ELSE } \langle \tau \rangle \mbox{ OP_CLTV OP_DROP } \langle X_2 \rangle \mbox{ OP_CHECKSIG OP_ENDIF} \end{array}$

- in words, such a output can be spent either
 - with y such that SHA256(y) = h and a signature under X_1
 - OR after time τ with a signature under X_2

used in the Lightning Network for payment channels and routing

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 9 / 40

orr

Hash Time-Lock Contract (HTLC)

• Hash Time-Locked Contracts $HTLC(h, X_1, \tau, X_2)$:

 $\label{eq:op_if_op_sha256} \begin{array}{l} \langle h \rangle \mbox{ OP_EQUALVERIFY } \langle X_1 \rangle \mbox{ OP_CHECKSIG} \\ \\ \mbox{ OP_ELSE } \langle \tau \rangle \mbox{ OP_CLTV OP_DROP } \langle X_2 \rangle \mbox{ OP_CHECKSIG OP_ENDIF} \end{array}$

- in words, such a output can be spent either
 - with y such that SHA256(y) = h and a signature under X_1
 - OR after time au with a signature under X_2
- used in the Lightning Network for payment channels and routing
Atomic (cross-chain) swaps [Nol13]

• allows trading without a trusted party

- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

norr

ot

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

norr

ot

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

norr

oot

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

norr

ot

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

norr

oot

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

norr

oot

Atomic (cross-chain) swaps [Nol13]

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 10 / 40

norr

ot

Atomic (cross-chain) swaps [Nol13]

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)

• problem: not private at all, the payments can be linked with y

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 10 / 40

norr

oot

- allows trading without a trusted party
- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice (public key X_A) and Bob (public key X_B) proceed as follows:
 - Bob chooses random y and sends h = SHA256(y) to Alice
 - Bob sends 100 litecoins to $HTLC(X_A, h, X_B, \tau_B)$
 - Alice sends 1 bitcoin to $HTLC(X_B, h, X_A, \tau_A)$
 - Bob claims Alice's bitcoin, revealing y
 - Alice can claim Bob's 100 litecoins using y
- if anything goes wrong, parties can get funds back after au_A/ au_B
- τ_B must be significantly later than τ_A (otherwise Bob could claim both HTLC outputs between τ_B and τ_A)
- problem: not private at all, the payments can be linked with y

Automated bounties

• What does the following scriptPubKey?

OP_2DUP	OP_EQUAL	OP_NOT	OP_VERIFY	OP_SHA1	OP_SWAP	OP_SHA1	OP_EQUAL
---------	----------	--------	-----------	---------	---------	---------	----------

Automated bounties

• What does the following scriptPubKey?

• scriptSig = $\langle m_1
angle \; \langle m_2
angle$ returns True if

 $m_1 \neq m_2$ and SHA1 $(m_1) =$ SHA1 (m_2)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 11 / 40

Automated bounties

• What does the following scriptPubKey?

OP_2DUP OP_EQUAL OP_NOT OP_VERIFY OP_SHA1 OP_SWAP OP_SHA1 OP_EQUAL

• scriptSig = $\langle m_1
angle \; \langle m_2
angle$ returns True if

$$m_1 \neq m_2$$
 and SHA1 $(m_1) =$ SHA1 (m_2)

• bounty created in Sept. 2013 by P. Todd

(https://bitcointalk.org/index.php?topic=293382.0)

Refresher: Schnorr Signatures and MuSig

Taproot

Scriptless Scripts

Discreet Log Contracts

Conclusion

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 12 / 40

Signature scheme: definition

A signature scheme consists of three algorithms:

- 1. key generation algorithm Gen:
 - returns a public/secret key pair (pk, sk)
- 2. signature algorithm Sign:
 - takes as input a secret key sk and a message m
 - returns a signature σ
- 3. verification algorithm Ver:
 - takes as input a public key pk, a message m, and a signature σ
 - returns 1 if the signature is valid and 0 otherwise

Correctness property:

 $\forall (pk, sk) \leftarrow \texttt{Gen}, \ \forall m, \ \texttt{Ver}(pk, m, \texttt{Sign}(sk, m)) = 1$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 13 / 40

Signature scheme: definition

A signature scheme consists of three algorithms:

- 1. key generation algorithm Gen:
 - returns a public/secret key pair (pk, sk)
- 2. signature algorithm Sign:
 - takes as input a secret key sk and a message m
 - returns a signature σ
- 3. verification algorithm Ver:
 - takes as input a public key pk, a message m, and a signature σ
 - returns 1 if the signature is valid and 0 otherwise

Correctness property:

```
\forall (pk, sk) \leftarrow \text{Gen}, \forall m, \text{Ver}(pk, m, \text{Sign}(sk, m)) = 1
```

Y. Seurin (ANSSI)

Mathematical background

Cyclic group and generator

Let \mathbb{G} be an abelian group of order p. An element $G \in \mathbb{G}$ is called a *generator* if

$$\langle G
angle \stackrel{\mathrm{def}}{=} \{ \mathsf{0}G, \mathsf{1}G, \mathsf{2}G, \ldots \} = \mathbb{G}.$$

If G is a generator, then for any $X \in \mathbb{G}$, there exists a unique $x \in \{0, \dots, p-1\}$ such that X = xG.

Discrete logarithm problem

Given $X \in \mathbb{G}$, find $x \in \{0, \dots, p-1\}$ such that X = xG.

NB: with multiplicative notation, $xG \sim G^{x}$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 14 / 40

Mathematical background

Cyclic group and generator

Let \mathbb{G} be an abelian group of order p. An element $G \in \mathbb{G}$ is called a *generator* if

$$\langle G \rangle \stackrel{\mathrm{def}}{=} \{ \mathsf{0}G, \mathsf{1}G, \mathsf{2}G, \ldots \} = \mathbb{G}.$$

If G is a generator, then for any $X \in \mathbb{G}$, there exists a unique $x \in \{0, \dots, p-1\}$ such that X = xG.

Discrete logarithm problem

Given $X \in \mathbb{G}$, find $x \in \{0, \dots, p-1\}$ such that X = xG.

NB: with multiplicative notation, $xG \sim G^x$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 14 / 40

- public parameters:
 - a cyclic group \mathbb{G} of prime order p and a generator G
 - a hash function H
- key generation:
 - secret key $x \leftarrow_{\$} \mathbb{Z}_p$
 - public key X = xG
- signature: on input *m* and *x*,
 - draw $r \leftarrow_{\$} \mathbb{Z}_p$ and compute R = rG
 - compute c = H(X, R, m) and $s = r + cx \mod p$
 - output $\sigma = (R, s)$
- verification: on input X, m and $\sigma = (R, s)$,
 - compute c = H(X, R, m) and check $sG \stackrel{?}{=} R + cX$
- alternative:
 - signature $\sigma = (c, s)$
 - verification: compute R = sG cX and check $H(X, R, m) \stackrel{\ell}{=} c$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 15 / 40

- public parameters:
 - a cyclic group \mathbb{G} of prime order p and a generator G
 - a hash function H
- key generation:
 - secret key $x \leftarrow_{\$} \mathbb{Z}_p$
 - public key X = xG
- signature: on input *m* and *x*,
 - draw $r \leftarrow_{\$} \mathbb{Z}_p$ and compute R = rG
 - compute c = H(X, R, m) and $s = r + cx \mod p$
 - output $\sigma = (R, s)$
- verification: on input X, m and $\sigma = (R, s)$,
 - compute c = H(X, R, m) and check $sG \stackrel{?}{=} R + cX$
- alternative:
 - signature $\sigma = (c, s)$
 - verification: compute R = sG cX and check $H(X, R, m) \stackrel{\ell}{=} c$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

22/11/2018 — BlockSem 15 / 40

- public parameters:
 - a cyclic group \mathbb{G} of prime order p and a generator G
 - a hash function H
- key generation:
 - secret key $x \leftarrow_{\$} \mathbb{Z}_p$
 - public key X = xG
- signature: on input *m* and *x*,
 - draw $r \leftarrow_{\$} \mathbb{Z}_p$ and compute R = rG
 - compute c = H(X, R, m) and $s = r + cx \mod p$
 - output $\sigma = (R, s)$
- verification: on input X, m and $\sigma = (R, s)$,
 - compute c = H(X, R, m) and check $sG \stackrel{!}{=} R + cX$
- alternative:
 - signature $\sigma = (c, s)$
 - verification: compute R = sG cX and check $H(X, R, m) \stackrel{\ell}{=} c$

Y. Seurin (ANSSI)

- public parameters:
 - a cyclic group \mathbb{G} of prime order p and a generator G
 - a hash function H
- key generation:
 - secret key $x \leftarrow_{\$} \mathbb{Z}_p$
 - public key X = xG
- signature: on input *m* and *x*,
 - draw $r \leftarrow_{\$} \mathbb{Z}_p$ and compute R = rG
 - compute c = H(X, R, m) and $s = r + cx \mod p$
 - output $\sigma = (R, s)$
- verification: on input X, m and $\sigma = (R, s)$,
 - compute c = H(X, R, m) and check $sG \stackrel{?}{=} R + cX$
- alternative:
 - signature $\sigma = (c, s)$
 - verification: compute R = sG cX and check $H(X, R, m) \stackrel{\ell}{=} c$

Y. Seurin (ANSSI)

- public parameters:
 - a cyclic group \mathbb{G} of prime order p and a generator G
 - a hash function H
- key generation:
 - secret key $x \leftarrow_{\$} \mathbb{Z}_p$
 - public key X = xG
- signature: on input *m* and *x*,
 - draw $r \leftarrow_{\$} \mathbb{Z}_p$ and compute R = rG
 - compute c = H(X, R, m) and $s = r + cx \mod p$
 - output $\sigma = (R, s)$
- verification: on input X, m and $\sigma = (R, s)$,
 - compute c = H(X, R, m) and check $sG \stackrel{?}{=} R + cX$
- alternative:
 - signature $\sigma = (c, s)$
 - verification: compute R = sG cX and check $H(X, R, m) \stackrel{!}{=} c$

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} := \sum_{i=1}^{n} \mu_i X_i \quad \text{with} \quad \mu_i = H(\{X_1, \dots, X_n\}, X_i)$$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\tilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} \coloneqq \sum_{i=1}^n \mu_i X_i$$
 with $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\tilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} \coloneqq \sum_{i=1}^{n} \mu_i X_i$$
 with $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\widetilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

Y. Seurin (ANSSI)

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} := \sum_{i=1}^{n} \mu_i X_i$$
 with $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\widetilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

Y. Seurin (ANSSI)

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} := \sum_{i=1}^{n} \mu_i X_i$$
 with $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\widetilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

Y. Seurin (ANSSI)

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} := \sum_{i=1}^{n} \mu_i X_i$$
 with $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\widetilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

Y. Seurin (ANSSI)

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} := \sum_{i=1}^{n} \mu_i X_i$$
 with $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\widetilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} := \sum_{i=1}^{n} \mu_i X_i$$
 with $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\widetilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

- assume n signers with public keys {X₁ = x₁G,..., X_n = x_nG} want to sign the same message m
- they compute an aggregate key

$$\widetilde{X} := \sum_{i=1}^{n} \mu_i X_i$$
 with $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$

- signature protocol:
 - signers draw nonces $R_i = r_i G$ and send commitments $h_i = H'(R_i)$
 - signers exchange nonces R_i
 - signers compute $R = \sum_{i=1}^{n} R_i$ and $c = H(\widetilde{X}, R, m)$
 - signers compute and exchange partial signatures $s_i = r_i + c\mu_i x_i$
 - signers compute $s = \sum_{i=1}^{n} s_i \mod p$
 - the multi-signature is $\sigma = (R, s)$

• verification: (R, s) is a valid signature for m under \widetilde{X} if

$$sG = R + H(\widetilde{X}, R, m)\widetilde{X}$$

• correctness proof:

$$sG = \sum_{i=1}^{n} s_i G = \underbrace{\sum_{R} r_i G}_{R} + H(\widetilde{X}, R, m) \underbrace{\sum_{\mu_i \times i} G}_{\widetilde{X}}$$

- same as standard Schnorr signature for public key \tilde{X} !
- secure in the plain public key model:
 - no assumption on how participants choose their public keys
 - multipliers $\mu_i = H(\{X_1, \dots, X_n\}, X_i)$ prevent rogue key attacks

Y. Seurin (ANSSI)

• verification: (R, s) is a valid signature for m under \widetilde{X} if

$$sG = R + H(\widetilde{X}, R, m)\widetilde{X}$$

• correctness proof:

$$sG = \sum_{i=1}^{n} s_i G = \underbrace{\sum_{R} r_i G}_{R} + H(\widetilde{X}, R, m) \underbrace{\sum_{i=1}^{n} \mu_i x_i G}_{\widetilde{X}}$$

- same as standard Schnorr signature for public key X!
- secure in the plain public key model:
 - no assumption on how participants choose their public keys
 - multipliers $\mu_i = H(\{X_1, \dots, X_n\}, X_i)$ prevent rogue key attacks

Y. Seurin (ANSSI)

• verification: (R, s) is a valid signature for m under \widetilde{X} if

$$sG = R + H(\widetilde{X}, R, m)\widetilde{X}$$

• correctness proof:

Schnorr

$$sG = \sum_{i=1}^{n} s_i G = \underbrace{\sum_{R} r_i G}_{R} + H(\widetilde{X}, R, m) \underbrace{\sum_{i=1}^{n} \mu_i x_i G}_{\widetilde{X}}$$

• same as standard Schnorr signature for public key X!

secure in the plain public key model:

no assumption on how participants choose their public keys
 multipliers w = H({X₁, X₂}, X₂) prevent roque key attacks

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Discreet Log Contracts
• verification: (R, s) is a valid signature for m under \widetilde{X} if

$$sG = R + H(\widetilde{X}, R, m)\widetilde{X}$$

• correctness proof:

Schnorr

$$sG = \sum_{i=1}^{n} s_i G = \underbrace{\sum_{R} r_i G}_{R} + H(\widetilde{X}, R, m) \underbrace{\sum_{\mu_i x_i G}}_{\widetilde{\chi}}$$

- same as standard Schnorr signature for public key X!
- secure in the plain public key model:
 - no assumption on how participants choose their public keys
 - multipliers $\mu_i = H(\{X_1, \ldots, X_n\}, X_i)$ prevent rogue key attacks

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Discreet Log Contracts

• verification: (R, s) is a valid signature for m under \widetilde{X} if

$$sG = R + H(\widetilde{X}, R, m)\widetilde{X}$$

• correctness proof:

Schnorr

$$sG = \sum_{i=1}^{n} s_i G = \underbrace{\sum_{R} r_i G}_{R} + H(\widetilde{X}, R, m) \underbrace{\sum_{i=1}^{n} \mu_i x_i G}_{\widetilde{X}}$$

- same as standard Schnorr signature for public key \tilde{X} !
- secure in the plain public key model:
 - no assumption on how participants choose their public keys
 - multipliers $\mu_i = H(\{X_1, \dots, X_n\}, X_i)$ prevent rogue key attacks

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Discreet Log Contracts

MuSig: Multi-signatures supporting key aggregation

• verification: (R, s) is a valid signature for m under \widetilde{X} if

$$sG = R + H(\widetilde{X}, R, m)\widetilde{X}$$

• correctness proof:

Schnorr

$$sG = \sum_{i=1}^{n} s_i G = \underbrace{\sum_{R} r_i G}_{R} + H(\widetilde{X}, R, m) \underbrace{\sum_{i=1}^{n} \mu_i x_i G}_{\widetilde{X}}$$

- same as standard Schnorr signature for public key \widetilde{X} !
- secure in the plain public key model:
 - no assumption on how participants choose their public keys
 - multipliers $\mu_i = H(\{X_1, \dots, X_n\}, X_i)$ prevent rogue key attacks

Y. Seurin (ANSSI)

Discreet Log Contracts

Schnorr

Application: replacing OP_CHECKMULTISIG

- using MuSig, an *n*-of-*n* multisig output for public keys $\{X_1, \ldots, X_n\}$ can be replaced by a standard P2PKH output for the aggregate key \widetilde{X}
- this improves both efficiency and privacy
 - one public key and one signature to store and verify (versus n pk and n sigs)
 - individual public keys are never revealed
 - the multisig output is indistinguishable from a standard P2PKH output

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- using MuSig, an *n*-of-*n* multisig output for public keys $\{X_1, \ldots, X_n\}$ can be replaced by a standard P2PKH output for the aggregate key \widetilde{X}
- this improves both efficiency and privacy
 - one public key and one signature to store and verify (versus n pk and n sigs)
 - individual public keys are never revealed
 - the multisig output is indistinguishable from a standard P2PKH output

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- using MuSig, an *n*-of-*n* multisig output for public keys $\{X_1, \ldots, X_n\}$ can be replaced by a standard P2PKH output for the aggregate key \widetilde{X}
- this improves both efficiency and privacy
 - one public key and one signature to store and verify (versus *n* pk and *n* sigs)
 - individual public keys are never revealed
 - the multisig output is indistinguishable from a standard P2PKH output

- using MuSig, an *n*-of-*n* multisig output for public keys $\{X_1, \ldots, X_n\}$ can be replaced by a standard P2PKH output for the aggregate key \widetilde{X}
- this improves both efficiency and privacy
 - one public key and one signature to store and verify (versus *n* pk and *n* sigs)
 - individual public keys are never revealed
 - the multisig output is indistinguishable from a standard P2PKH output

- using MuSig, an *n*-of-*n* multisig output for public keys $\{X_1, \ldots, X_n\}$ can be replaced by a standard P2PKH output for the aggregate key \widetilde{X}
- this improves both efficiency and privacy
 - one public key and one signature to store and verify (versus *n* pk and *n* sigs)
 - individual public keys are never revealed
 - the multisig output is indistinguishable from a standard P2PKH output

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Bitcoin Script

Refresher: Schnorr Signatures and MuSig

Taproot

Scriptless Scripts

Discreet Log Contracts

Conclusion

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

• new type of transaction activated in 2012 (BIP 16)

- output only contains a hash of the actual scriptPubKey (*redeem script*) acting as a (binding) commitment
- spending the output requires the redeem script and a valid signature script
- advantages:
 - the sender does not need to know the redeem script when creating the transaction (only the hash)
 - all P2SH addresses "look the same"
 - redeem scripts not contained in the UTXO set anymore (only revealed when spending an output)
- P2SH addresses start with a '3'

- new type of transaction activated in 2012 (BIP 16)
- output only contains a hash of the actual scriptPubKey (*redeem script*) acting as a (binding) commitment
- spending the output requires the redeem script and a valid signature script
- advantages:
 - the sender does not need to know the redeem script when creating the transaction (only the hash)
 - all P2SH addresses "look the same"
 - redeem scripts not contained in the UTXO set anymore (only revealed when spending an output)
- P2SH addresses start with a '3'

- new type of transaction activated in 2012 (BIP 16)
- output only contains a hash of the actual scriptPubKey (*redeem script*) acting as a (binding) commitment
- spending the output requires the redeem script and a valid signature script
- advantages:
 - the sender does not need to know the redeem script when creating the transaction (only the hash)
 - all P2SH addresses "look the same"
 - redeem scripts not contained in the UTXO set anymore (only revealed when spending an output)
- P2SH addresses start with a '3

- new type of transaction activated in 2012 (BIP 16)
- output only contains a hash of the actual scriptPubKey (*redeem script*) acting as a (binding) commitment
- spending the output requires the redeem script and a valid signature script
- advantages:
 - the sender does not need to know the redeem script when creating the transaction (only the hash)
 - all P2SH addresses "look the same"
 - redeem scripts not contained in the UTXO set anymore (only revealed when spending an output)
- P2SH addresses start with a '3'

• new type of transaction activated in 2012 (BIP 16)

- output only contains a hash of the actual scriptPubKey (*redeem script*) acting as a (binding) commitment
- spending the output requires the redeem script and a valid signature script
- advantages:
 - the sender does not need to know the redeem script when creating the transaction (only the hash)
 - all P2SH addresses "look the same"
 - redeem scripts not contained in the UTXO set anymore (only revealed when spending an output)
- P2SH addresses start with a '3'

• new type of transaction activated in 2012 (BIP 16)

- output only contains a hash of the actual scriptPubKey (*redeem script*) acting as a (binding) commitment
- spending the output requires the redeem script and a valid signature script
- advantages:
 - the sender does not need to know the redeem script when creating the transaction (only the hash)
 - all P2SH addresses "look the same"
 - redeem scripts not contained in the UTXO set anymore (only revealed when spending an output)
- P2SH addresses start with a '3'

• new type of transaction activated in 2012 (BIP 16)

Taproot

- output only contains a hash of the actual scriptPubKey (*redeem script*) acting as a (binding) commitment
- spending the output requires the redeem script and a valid signature script
- advantages:
 - the sender does not need to know the redeem script when creating the transaction (only the hash)
 - all P2SH addresses "look the same"
 - redeem scripts not contained in the UTXO set anymore (only revealed when spending an output)

• P2SH addresses start with a '3'

Y. Seurin (ANSSI)

• new type of transaction activated in 2012 (BIP 16)

- output only contains a hash of the actual scriptPubKey (*redeem script*) acting as a (binding) commitment
- spending the output requires the redeem script and a valid signature script
- advantages:
 - the sender does not need to know the redeem script when creating the transaction (only the hash)
 - all P2SH addresses "look the same"
 - redeem scripts not contained in the UTXO set anymore (only revealed when spending an output)
- P2SH addresses start with a '3'

- credited to R. O'Connor and P. Wuille, not deployed yet
- scripts are usually an OR of several conditions

- put all disjunctions in a Merkel tree
- output contains the Merkle root
- to spend a MAST output, the input must contain one of the disjunctions *S_i*, a Merkle proof, and a valid scriptSig for *S_i*

- credited to R. O'Connor and P. Wuille, not deployed yet
- scripts are usually an OR of several conditions

- put all disjunctions in a Merkel tree
- output contains the Merkle root
- to spend a MAST output, the input must contain one of the disjunctions *S_i*, a Merkle proof, and a valid scriptSig for *S_i*

- credited to R. O'Connor and P. Wuille, not deployed yet
- scripts are usually an OR of several conditions
- put all disjunctions in a Merkel tree
- output contains the Merkle root
- to spend a MAST output, the input must contain one of the disjunctions *S_i*, a Merkle proof, and a valid scriptSig for *S_i*

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- credited to R. O'Connor and P. Wuille, not deployed yet
- scripts are usually an OR of several conditions
- put all disjunctions in a Merkel tree
- output contains the Merkle root
- to spend a MAST output, the input must contain one of the disjunctions *S_i*, a Merkle proof, and a valid scriptSig for *S_i*

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- credited to R. O'Connor and P. Wuille, not deployed yet
- scripts are usually an OR of several conditions
- put all disjunctions in a Merkel tree
- output contains the Merkle root
- to spend a MAST output, the input must contain one of the disjunctions *S_i*, a Merkle proof, and a valid scriptSig for *S_i*

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- credited to R. O'Connor and P. Wuille, not deployed yet
- scripts are usually an OR of several conditions
- put all disjunctions in a Merkel tree
- output contains the Merkle root
- to spend a MAST output, the input must contain one of the disjunctions *S_i*, a Merkle proof, and a valid scriptSig for *S_i*

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Taproot: description

- propose by G. Maxwell [Max18]
- in practice, redeem scripts often have a unanimity clause:

(*n* parties agree to sign) OR (some more complex conditions)

- can be achieved indistinguishably from a standard P2PKH output
- let X be the MuSig aggregate key for the n parties
- output uses public key $Y = \widetilde{X} + H(\widetilde{X}, S)G$
- two ways to spend the output:
 - the *n* parties agree to sign with Y (one of them simply adds a corrective term *cH*(X, S) to its partial signature s_i)
 ⇒ looks like a normal P2PKH spending, S remains forever private
 - X and S are revealed and a scriptSig S' is provided; valid if $\widetilde{X} + H(\widetilde{X}, S)G = Y$ and S' ||S returns True

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- can be achieved indistinguishably from a standard P2PKH output
- let X be the MuSig aggregate key for the *n* parties
- output uses public key $Y = \widetilde{X} + H(\widetilde{X}, S)G$
- two ways to spend the output:
 - the *n* parties agree to sign with Y (one of them simply adds a corrective term cH(X, S) to its partial signature s_i)
 ⇒ looks like a normal P2PKH spending, S remains forever private
 X and S are revealed and a scriptSig S' is provided; valid if X + H(X S)G = Y and S'||S returns True

More Schnorr Tricks for Bitcoin

- propose by G. Maxwell [Max18]
- in practice, redeem scripts often have a unanimity clause:

- can be achieved indistinguishably from a standard P2PKH output
- let \widetilde{X} be the MuSig aggregate key for the *n* parties
- output uses public key $Y = \widetilde{X} + H(\widetilde{X}, S)G$
- two ways to spend the output:
 - the *n* parties agree to sign with *Y* (one of them simply adds a corrective term *cH*(*X̃*, *S*) to its partial signature *s_i*) ⇒ looks like a normal P2PKH spending. *S* remains forever private
 - \widetilde{X} and S are revealed and a scriptSig S' is provided; valid if $\widetilde{X} + H(\widetilde{X}, S)G = Y$ and S' ||S returns True

More Schnorr Tricks for Bitcoin

- propose by G. Maxwell [Max18]
- in practice, redeem scripts often have a unanimity clause:

- can be achieved indistinguishably from a standard P2PKH output
- let \widetilde{X} be the MuSig aggregate key for the *n* parties
- output uses public key $Y = \widetilde{X} + H(\widetilde{X}, S)G$
- two ways to spend the output:
 - the *n* parties agree to sign with Y (one of them simply adds a corrective term cH(X, S) to its partial signature s_i)
 - \Rightarrow looks like a normal P2PKH spending, S remains forever private

• X and S are revealed and a scriptSig S' is provided; valid if $\widetilde{X} + H(\widetilde{X}, S)G = Y$ and S' ||S returns True

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- propose by G. Maxwell [Max18]
- in practice, redeem scripts often have a unanimity clause:

- can be achieved indistinguishably from a standard P2PKH output
- let \widetilde{X} be the MuSig aggregate key for the *n* parties
- output uses public key $Y = \widetilde{X} + H(\widetilde{X}, S)G$
- two ways to spend the output:
 - the *n* parties agree to sign with Y (one of them simply adds a corrective term cH(X, S) to its partial signature s_i)
 ⇒ looks like a normal P2PKH coording. S remains forever prive
 - $\underset{\sim}{\Rightarrow}$ looks like a normal P2PKH spending, S remains forever private
 - \widetilde{X} and S are revealed and a scriptSig S' is provided; valid if $\widetilde{X} + H(\widetilde{X}, S)G = Y$ and S' ||S returns True

- a taproot public key $Y = \tilde{X} + H(\tilde{X}, S)G$ acts as a (hiding and binding) commitment on S:
 - hiding: Y does not reveal anything about S
 - binding: computationally hard to find $(\widetilde{X}', S') \neq (\widetilde{X}, S)$ such that $Y = \widetilde{X}' + H(\widetilde{X}', S')G$ (provably so in the random oracle model)
- unforgeability can be proved in the ROM by extending the proof for Schnorr signatures

- a taproot public key $Y = \tilde{X} + H(\tilde{X}, S)G$ acts as a (hiding and binding) commitment on S:
 - hiding: Y does not reveal anything about S
 - binding: computationally hard to find $(\widetilde{X}', S') \neq (\widetilde{X}, S)$ such that $Y = \widetilde{X}' + H(\widetilde{X}', S')G$ (provably so in the random oracle model)
- unforgeability can be proved in the ROM by extending the proof for Schnorr signatures

- a taproot public key $Y = \tilde{X} + H(\tilde{X}, S)G$ acts as a (hiding and binding) commitment on S:
 - hiding: Y does not reveal anything about S
 - binding: computationally hard to find $(\widetilde{X}', S') \neq (\widetilde{X}, S)$ such that $Y = \widetilde{X}' + H(\widetilde{X}', S')G$ (provably so in the random oracle model)
- unforgeability can be proved in the ROM by extending the proof for Schnorr signatures

More Schnorr Tricks for Bitcoin

- a taproot public key $Y = \tilde{X} + H(\tilde{X}, S)G$ acts as a (hiding and binding) commitment on S:
 - hiding: Y does not reveal anything about S
 - binding: computationally hard to find $(\widetilde{X}', S') \neq (\widetilde{X}, S)$ such that $Y = \widetilde{X}' + H(\widetilde{X}', S')G$ (provably so in the random oracle model)
- unforgeability can be proved in the ROM by extending the proof for Schnorr signatures

Bitcoin Script

Refresher: Schnorr Signatures and MuSig

Taproot

Scriptless Scripts

Discreet Log Contracts

Conclusion

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Scriptless Scripts

• proposed by A. Poelstra, originally motivated by Mimblewimble

- goal: enforce smart contracts without publishing the contract in the blockchain, using only standard (P2PKH) transactions
- MuSig is a kind of basic scriptless script (makes *n*-of-*n* multisig indistinguishable from a standard P2PKH)
- relies on a tool called adaptor signatures

- proposed by A. Poelstra, originally motivated by Mimblewimble
 - goal: enforce smart contracts without publishing the contract in the blockchain, using only standard (P2PKH) transactions
- MuSig is a kind of basic scriptless script (makes *n*-of-*n* multisig indistinguishable from a standard P2PKH)
- relies on a tool called adaptor signatures

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- proposed by A. Poelstra, originally motivated by Mimblewimble
 - goal: enforce smart contracts without publishing the contract in the blockchain, using only standard (P2PKH) transactions
 - MuSig is a kind of basic scriptless script (makes *n*-of-*n* multisig indistinguishable from a standard P2PKH)
 - relies on a tool called adaptor signatures

- proposed by A. Poelstra, originally motivated by Mimblewimble
- goal: enforce smart contracts without publishing the contract in the blockchain, using only standard (P2PKH) transactions
- MuSig is a kind of basic scriptless script (makes *n*-of-*n* multisig indistinguishable from a standard P2PKH)
- relies on a tool called adaptor signatures

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Conclusion

Adaptor signatures

Scriptless Scripts

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

• assume the signer chooses (t, T = tG) and offsets the signature:

$$s - t = r - t + H(X, R, m)x$$
 (1)
 $(s - t)G = R - T + H(X, R, m)X$ (2)

- signer reveals adaptor signature (R, T, s̄ = s − t):
 → not a valid signature, but (1) can be verified using (2)
- then revealing signature $s \Leftrightarrow$ revealing t
- t can be some secret value necessary for an auxiliary protocol (correctness can be proved in zero-knowledge from T)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Scriptless Scripts

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

• assume the signer chooses (t, T = tG) and offsets the signature:

$$s - t = r - t + H(X, R, m)x$$
 (1)
 $(s - t)G = R - T + H(X, R, m)X$ (2)

- then revealing signature $s \Leftrightarrow$ revealing t
- t can be some secret value necessary for an auxiliary protocol (correctness can be proved in zero-knowledge from T)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Scriptless Scripts

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

• assume the signer chooses (t, T = tG) and offsets the signature:

$$s-t=r-t+H(X,R,m)x$$
(1)

$$(s-t)G = R - T + H(X, R, m)X$$
⁽²⁾

- signer reveals adaptor signature (R, T, s̄ = s − t):
 → not a valid signature, but (1) can be verified using (2)
- then revealing signature $s \Leftrightarrow$ revealing t
- t can be some secret value necessary for an auxiliary protocol (correctness can be proved in zero-knowledge from T)

Y. Seurin (ANSSI)

Scriptless Scripts

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

• assume the signer chooses (t, T = tG) and offsets the signature:

$$s-t = r - t + H(X, R, m)x$$
(1)

$$(s-t)G = R - T + H(X, R, m)X$$
⁽²⁾

- signer reveals adaptor signature (R, T, s̄ = s − t):
 → not a valid signature, but (1) can be verified using (2)
- then revealing signature $s \Leftrightarrow$ revealing t
- t can be some secret value necessary for an auxiliary protocol (correctness can be proved in zero-knowledge from T)

Y. Seurin (ANSSI)

Scriptless Scripts

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

• assume the signer chooses (t, T = tG) and offsets the signature:

$$s-t=r-t+H(X,R,m)x$$
(1)

$$(s-t)G = R - T + H(X, R, m)X$$
⁽²⁾

- signer reveals adaptor signature (R, T, s̄ = s − t):
 → not a valid signature, but (1) can be verified using (2)
- then revealing signature $s \Leftrightarrow$ revealing t
- t can be some secret value necessary for an auxiliary protocol (correctness can be proved in zero-knowledge from T)

Y. Seurin (ANSSI)

- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice sends 1 bitcoin to a 2-of-2 MuSig public key

 $\widetilde{X} = \mu_A X_A + \mu_B X_B$ with $\mu_i = H(\{X_A, X_B\}, X_i), i \in \{A, B\}$

• Bob sends 100 litecoins to a 2-of-2 MuSig public key

 $\widetilde{X}' = \mu'_A X'_A + \mu'_B X'_B$ with $\mu'_i = H(\{X'_A, X'_B\}, X'_i), i \in \{A, B\}$

- Alice and Bob must now compute two signatures:
 - $(R = (r_A + r_B)G, s)$ sending the bitcoin to Bob with

$$s = \underbrace{r_A + H(\widetilde{X}, R, m)\mu_A x_A}_{P} + \underbrace{r_B + H(\widetilde{X}, R, m)\mu_B x_B}_{P}$$

• $(R' = (r'_A + r'_B)G, s')$ sending the 100 litecoins to Alice with

 $s' = r'_A + H(\widetilde{X}', R', m')\mu'_A x'_A + r'_B + H(\widetilde{X}', R', m')\mu'_B x'_B$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice sends 1 bitcoin to a 2-of-2 MuSig public key

$$\widetilde{X} = \mu_A X_A + \mu_B X_B$$
 with $\mu_i = H(\{X_A, X_B\}, X_i), i \in \{A, B\}$

• Bob sends 100 litecoins to a 2-of-2 MuSig public key

 $\widetilde{X}' = \mu'_A X'_A + \mu'_B X'_B$ with $\mu'_i = H(\{X'_A, X'_B\}, X'_i), i \in \{A, B\}$

- Alice and Bob must now compute two signatures:
 - $(R = (r_A + r_B)G, s)$ sending the bitcoin to Bob with

$$s = \underbrace{r_A + H(\widetilde{X}, R, m)\mu_A x_A}_{P} + \underbrace{r_B + H(\widetilde{X}, R, m)\mu_B x_B}_{P}$$

• $(R' = (r'_A + r'_B)G, s')$ sending the 100 litecoins to Alice with

 $s' = r'_A + H(\widetilde{X}', R', m')\mu'_A x'_A + r'_B + H(\widetilde{X}', R', m')\mu'_B x'_B$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice sends 1 bitcoin to a 2-of-2 MuSig public key

 $\widetilde{X} = \mu_A X_A + \mu_B X_B$ with $\mu_i = H(\{X_A, X_B\}, X_i), i \in \{A, B\}$

• Bob sends 100 litecoins to a 2-of-2 MuSig public key

 $\widetilde{X}' = \mu'_A X'_A + \mu'_B X'_B$ with $\mu'_i = H(\{X'_A, X'_B\}, X'_i), i \in \{A, B\}$

• Alice and Bob must now compute two signatures:

• $(R = (r_A + r_B)G, s)$ sending the bitcoin to Bob with

 $\sigma = \underbrace{r_A + H(X, R, m)\mu_A x_A}_{t_B} + \underbrace{r_B + H(X, R, m)\mu_B x_B}_{t_B}$

• $(R' = (r'_A + r'_B)G, s')$ sending the 100 litecoins to Alice with

 $s' = r'_A + H(\widetilde{X}', R', m')\mu'_A x'_A + r'_B + H(\widetilde{X}', R', m')\mu'_B x'_B$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice sends 1 bitcoin to a 2-of-2 MuSig public key

$$\widetilde{X} = \mu_A X_A + \mu_B X_B$$
 with $\mu_i = H(\{X_A, X_B\}, X_i), i \in \{A, B\}$

• Bob sends 100 litecoins to a 2-of-2 MuSig public key

 $\widetilde{X}' = \mu'_A X'_A + \mu'_B X'_B$ with $\mu'_i = H(\{X'_A, X'_B\}, X'_i), i \in \{A, B\}$

• Alice and Bob must now compute two signatures:

• $(R = (r_A + r_B)G, s)$ sending the bitcoin to Bob with

$$s = \underbrace{r_A + H(\widetilde{X}, R, m)\mu_A x_A}_{S_A} + \underbrace{r_B + H(\widetilde{X}, R, m)\mu_B x_B}_{S_B}$$

• $(R' = (r'_A + r'_B)G, s')$ sending the 100 litecoins to Alice with

$$s' = \underbrace{r'_A + H(\widetilde{X}', R', m')\mu'_A x'_A}_{s'_A} + \underbrace{r'_B + H(\widetilde{X}', R', m')\mu'_B x'_B}_{s'_B}$$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice sends 1 bitcoin to a 2-of-2 MuSig public key

$$\widetilde{X} = \mu_A X_A + \mu_B X_B$$
 with $\mu_i = H(\{X_A, X_B\}, X_i), i \in \{A, B\}$

• Bob sends 100 litecoins to a 2-of-2 MuSig public key

$$\widetilde{X}' = \mu'_A X'_A + \mu'_B X'_B$$
 with $\mu'_i = H(\{X'_A, X'_B\}, X'_i), i \in \{A, B\}$

- Alice and Bob must now compute two signatures:
 - $(R = (r_A + r_B)G, s)$ sending the bitcoin to Bob with

$$s = \underbrace{r_A + H(\widetilde{X}, R, m)\mu_A x_A}_{s_A} + \underbrace{r_B + H(\widetilde{X}, R, m)\mu_B x_B}_{s_B}$$

• $(R' = (r'_A + r'_B)G, s')$ sending the 100 litecoins to Alice with

$$s' = \underbrace{r'_A + H(\widetilde{X}', R', m')\mu'_A x'_A}_{s'_A} + \underbrace{r'_B + H(\widetilde{X}', R', m')\mu'_B x'_B}_{s'_B}$$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- suppose Alice wants to trade 1 bitcoin for 100 litecoins with Bob
- Alice sends 1 bitcoin to a 2-of-2 MuSig public key

$$\widetilde{X} = \mu_A X_A + \mu_B X_B$$
 with $\mu_i = H(\{X_A, X_B\}, X_i), i \in \{A, B\}$

• Bob sends 100 litecoins to a 2-of-2 MuSig public key

$$\widetilde{X}' = \mu'_A X'_A + \mu'_B X'_B$$
 with $\mu'_i = H(\{X'_A, X'_B\}, X'_i), i \in \{A, B\}$

- Alice and Bob must now compute two signatures:
 - $(R = (r_A + r_B)G, s)$ sending the bitcoin to Bob with

$$s = \underbrace{r_A + H(\widetilde{X}, R, m)\mu_A x_A}_{s_A} + \underbrace{r_B + H(\widetilde{X}, R, m)\mu_B x_B}_{s_B}$$

• $(R' = (r'_A + r'_B)G, s')$ sending the 100 litecoins to Alice with

$$s' = \underbrace{r'_A + H(\widetilde{X}', R', m')\mu'_A x'_A}_{s'_A} + \underbrace{r'_B + H(\widetilde{X}', R', m')\mu'_B x'_B}_{s'_B}$$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Scriptless Scripts

Bob and Alice exchange nonces

$$R_A = r_A G, \quad R_B = r_B G$$

 $R'_A = r'_A G, \quad R'_B = r'_B G$

• Bob sends two partial adaptor signatures $(R = (r_A + r_B)G, T, \overline{s}_B)$ and $(R' = (r'_A + r'_B)G, T, \overline{s}'_B)$ with the same (t, T = tG)

$$\overline{s}_B = s_B - t = r_B - t + H(\widetilde{X}, R, m)\mu_B x_B$$

$$\overline{s}'_B = s'_B - t = r'_B - t + H(\widetilde{X}', R', m')\mu'_B x'_B$$

- Alice checks them and sends her partial signature s_A to Bob
- Bob claims the bitcoin with $s = s_A + s_B$, revealing s_B and hence t
- Alice can compute $s'_B = \bar{s}'_B + t$ and claim the 100 litecoins

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Bob and Alice exchange nonces

$$R_A = r_A G, \quad R_B = r_B G$$

 $R'_A = r'_A G, \quad R'_B = r'_B G$

• Bob sends two partial adaptor signatures $(R = (r_A + r_B)G, T, \overline{s}_B)$ and $(R' = (r'_A + r'_B)G, T, \overline{s}'_B)$ with the same (t, T = tG)

$$\overline{s}_B = s_B - t = r_B - t + H(\widetilde{X}, R, m)\mu_B x_B$$

$$\overline{s}'_B = s'_B - t = r'_B - t + H(\widetilde{X}', R', m')\mu'_B x'_B$$

- Alice checks them and sends her partial signature s_A to Bob
- Bob claims the bitcoin with $s = s_A + s_B$, revealing s_B and hence t
- Alice can compute $s'_B = \overline{s}'_B + t$ and claim the 100 litecoins

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Bob and Alice exchange nonces

$$R_A = r_A G, \quad R_B = r_B G$$

 $R'_A = r'_A G, \quad R'_B = r'_B G$

• Bob sends two partial adaptor signatures $(R = (r_A + r_B)G, T, \overline{s}_B)$ and $(R' = (r'_A + r'_B)G, T, \overline{s}'_B)$ with the same (t, T = tG)

$$\overline{s}_B = s_B - t = r_B - t + H(\widetilde{X}, R, m)\mu_B x_B$$

$$\overline{s}'_B = s'_B - t = r'_B - t + H(\widetilde{X}', R', m')\mu'_B x'_B$$

- Alice checks them and sends her partial signature s_A to Bob
- Bob claims the bitcoin with $s = s_A + s_B$, revealing s_B and hence t
- Alice can compute $s'_B = \bar{s}'_B + t$ and claim the 100 litecoins

Y. Seurin (ANSSI)

Conclusion

Application: private atomic swaps [Gib17]

Bob and Alice exchange nonces

$$R_A = r_A G, \quad R_B = r_B G$$

 $R'_A = r'_A G, \quad R'_B = r'_B G$

• Bob sends two partial adaptor signatures $(R = (r_A + r_B)G, T, \overline{s}_B)$ and $(R' = (r'_A + r'_B)G, T, \overline{s}'_B)$ with the same (t, T = tG)

$$\overline{s}_B = s_B - t = r_B - t + H(\widetilde{X}, R, m)\mu_B x_B$$

$$\overline{s}'_B = s'_B - t = r'_B - t + H(\widetilde{X}', R', m')\mu'_B x'_B$$

- Alice checks them and sends her partial signature s_A to Bob
- Bob claims the bitcoin with $s = s_A + s_B$, revealing s_B and hence t
- Alice can compute $s'_B = \bar{s}'_B + t$ and claim the 100 litecoins

Y. Seurin (ANSSI)

Bob and Alice exchange nonces

$$R_A = r_A G, \quad R_B = r_B G$$

 $R'_A = r'_A G, \quad R'_B = r'_B G$

• Bob sends two partial adaptor signatures $(R = (r_A + r_B)G, T, \overline{s}_B)$ and $(R' = (r'_A + r'_B)G, T, \overline{s}'_B)$ with the same (t, T = tG)

$$\overline{s}_B = s_B - t = r_B - t + H(\widetilde{X}, R, m)\mu_B x_B$$

$$\overline{s}'_B = s'_B - t = r'_B - t + H(\widetilde{X}', R', m')\mu'_B x'_B$$

- Alice checks them and sends her partial signature s_A to Bob
- Bob claims the bitcoin with $s = s_A + s_B$, revealing s_B and hence t
- Alice can compute $s_B' = \bar{s}_B' + t$ and claim the 100 litecoins

Y. Seurin (ANSSI)

• the swap is perfectly private:

- the two transactions look "standard" to an external observer
- nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key \widetilde{X} or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key X' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with X OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- the swap is perfectly private:
 - the two transactions look "standard" to an external observer
 - nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key X̃ or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key X' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with X OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- the swap is perfectly private:
 - the two transactions look "standard" to an external observer
 - nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key \tilde{X} or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key X' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with X OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- the swap is perfectly private:
 - the two transactions look "standard" to an external observer
 - nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key X or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key X' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with X OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- the swap is perfectly private:
 - the two transactions look "standard" to an external observer
 - nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key \widetilde{X} or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key X' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with X OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- the swap is perfectly private:
 - the two transactions look "standard" to an external observer
 - nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key \widetilde{X} or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key \dot{X}' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with X OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- the swap is perfectly private:
 - the two transactions look "standard" to an external observer
 - nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key \widetilde{X} or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key \widetilde{X}' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with X OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- the swap is perfectly private:
 - the two transactions look "standard" to an external observer
 - nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key \widetilde{X} or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key \widetilde{X}' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with X OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- the swap is perfectly private:
 - the two transactions look "standard" to an external observer
 - nobody can tell that an atomic swap took place or link the two transactions together
- what if Alice or Bob defects once the funds have been sent to the MuSig addresses?
- \Rightarrow use a time-lock:
 - Alice's bitcoin can be spent either with the MuSig key \widetilde{X} or by Alice alone after time τ_A
 - Bob's 100 litecoins can be spent either with the MuSig key \widetilde{X}' or by Bob alone after time τ_B
- note: the time-lock for Bob must be larger than the one for Alice
- using Taproot, this more complex script "sign with \tilde{X} OR sign with X_A after time τ_A " can be made indistinguishable from a standard P2PKH address

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Bitcoin Script

Refresher: Schnorr Signatures and MuSig

Taproot

Scriptless Scripts

Discreet Log Contracts

Conclusion

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

• goal: enforce contracts based on external events

- example: gambling, insurance, ...
- problem: the blockchain is not aware of external events
- existing solutions: Augur, Gnosis, ChainLink, Oraclize
- Discreet Log Contracts allow conditional payments based on an external event, in a private way
- rely on a tool called anticipated signatures

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- goal: enforce contracts based on external events
- example: gambling, insurance, ...
- problem: the blockchain is not aware of external events
- existing solutions: Augur, Gnosis, ChainLink, Oraclize
- Discreet Log Contracts allow conditional payments based on an external event, in a private way
- rely on a tool called anticipated signatures

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- goal: enforce contracts based on external events
- example: gambling, insurance, ...
- problem: the blockchain is not aware of external events
- existing solutions: Augur, Gnosis, ChainLink, Oraclize
- Discreet Log Contracts allow conditional payments based on an external event, in a private way
- rely on a tool called anticipated signatures

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- goal: enforce contracts based on external events
- example: gambling, insurance, ...
- problem: the blockchain is not aware of external events
- existing solutions: Augur, Gnosis, ChainLink, Oraclize
- Discreet Log Contracts allow conditional payments based on an external event, in a private way
- rely on a tool called anticipated signatures

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- goal: enforce contracts based on external events
- example: gambling, insurance, ...
- problem: the blockchain is not aware of external events
- existing solutions: Augur, Gnosis, ChainLink, Oraclize
- Discreet Log Contracts allow conditional payments based on an external event, in a private way
- rely on a tool called anticipated signatures

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- goal: enforce contracts based on external events
- example: gambling, insurance, ...
- problem: the blockchain is not aware of external events
- existing solutions: Augur, Gnosis, ChainLink, Oraclize
- Discreet Log Contracts allow conditional payments based on an external event, in a private way
- rely on a tool called anticipated signatures

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin
Conclusion

Anticipated signatures

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

- assume the signer draws r and reveals R = rG before choosing which message to sign
- for any message *m*, anyone can compute

$$S_m \coloneqq s_m G = R + H(X, R, m)X$$

where (R, s_m) is the signature on m

- (X, R) can be seen as a one-time public key
- (s_m, S_m) can be seen as a key pair associated with m

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

- assume the signer draws r and reveals R = rG before choosing which message to sign
- for any message *m*, anyone can compute

$$S_m := s_m G = R + H(X, R, m)X$$

where (R, s_m) is the signature on m

- (X, R) can be seen as a one-time public key
- (s_m, S_m) can be seen as a key pair associated with m

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

- assume the signer draws r and reveals R = rG before choosing which message to sign
- for any message *m*, anyone can compute

$$S_m \coloneqq s_m G = R + H(X, R, m)X$$

where (R, s_m) is the signature on m

- (X, R) can be seen as a one-time public key
- (s_m, S_m) can be seen as a key pair associated with m

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

- assume the signer draws r and reveals R = rG before choosing which message to sign
- for any message *m*, anyone can compute

$$S_m \coloneqq s_m G = R + H(X, R, m)X$$

where (R, s_m) is the signature on m

- (X, R) can be seen as a one-time public key
- (s_m, S_m) can be seen as a key pair associated with m

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

• Schnorr signature (R = rG, s) on m under key (x, X = xG):

secret eq.	s = r + H(X, R, m)x
public eq.	sG = R + H(X, R, m)X

- assume the signer draws r and reveals R = rG before choosing which message to sign
- for any message *m*, anyone can compute

$$S_m \coloneqq s_m G = R + H(X, R, m)X$$

where (R, s_m) is the signature on m

- (X, R) can be seen as a one-time public key
- (s_m, S_m) can be seen as a key pair associated with m

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- Alice and Bob want to execute a contract based on some external event with a predetermined number of outcomes {*E*₁,...,*E*_n}
- Olivia: oracle in charge of observing the event and signing the outcome with public key (X = xG, R = rG)
- for each possible outcome E_i of the event, anybody can compute

$$S_i := s_i G = R + H(X, R, E_i) X$$

$$\widehat{X}_{A,i} = x_A G + S_i, \quad \text{resp.} \quad \widehat{X}_{B,i} = x_B G + S_i$$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- Alice and Bob want to execute a contract based on some external event with a predetermined number of outcomes {*E*₁,...,*E*_n}
- Olivia: oracle in charge of observing the event and signing the outcome with public key (X = xG, R = rG)
- for each possible outcome E_i of the event, anybody can compute

$$S_i := s_i G = R + H(X, R, E_i)X$$

$$\widehat{X}_{A,i} = x_A G + S_i,$$
 resp. $\widehat{X}_{B,i} = x_B G + S_i$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- Alice and Bob want to execute a contract based on some external event with a predetermined number of outcomes {*E*₁,...,*E*_n}
- Olivia: oracle in charge of observing the event and signing the outcome with public key (X = xG, R = rG)
- for each possible outcome E_i of the event, anybody can compute

$$S_i := s_i G = R + H(X, R, E_i)X$$

$$\widehat{X}_{A,i} = x_A G + S_i, \quad \text{resp.} \quad \widehat{X}_{B,i} = x_B G + S_i$$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- Alice and Bob want to execute a contract based on some external event with a predetermined number of outcomes {*E*₁,...,*E*_n}
- Olivia: oracle in charge of observing the event and signing the outcome with public key (X = xG, R = rG)
- for each possible outcome E_i of the event, anybody can compute

$$S_i := s_i G = R + H(X, R, E_i)X$$

$$\widehat{X}_{A,i} = x_A G + S_i, \quad \text{resp.} \quad \widehat{X}_{B,i} = x_B G + S_i$$

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- to establish the contract, Alice and Bob create an opening transaction $T^{\rm op}$ sending funds to a 2-of-2 multisig address
- they also create *n* pairs of closing transactions: $T_{A,i}^{cl}$ for Alice and $T_{B,i}^{cl}$ for Bob
- let Bal_{A,i} and Bal_{B,i} be the balances of Alice and Bob in case E_i happens; then:
 - $T_{A,i}^{\text{cl}}$ sends $\text{Bal}_{B,i}$ to X_B and $\text{Bal}_{A,i}$ to script $\widehat{X}_{A,i} \lor (\tau \land X_B)$
 - $T_{B,i}^{cl}$ sends $\operatorname{Bal}_{A,i}$ to X_A and $\operatorname{Bal}_{B,i}$ to script $\widehat{X}_{B,i} \lor (\tau \land X_A)$
- once the opening transaction and the *n* closing transaction pairs have been created, they include the opening transaction in the blockchain

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- to establish the contract, Alice and Bob create an opening transaction $T^{\rm op}$ sending funds to a 2-of-2 multisig address
- they also create n pairs of closing transactions: $T_{A,i}^{\rm cl}$ for Alice and $T_{B,i}^{\rm cl}$ for Bob
- let Bal_{A,i} and Bal_{B,i} be the balances of Alice and Bob in case E_i happens; then:
 - $T_{A,i}^{\text{cl}}$ sends $\text{Bal}_{B,i}$ to X_B and $\text{Bal}_{A,i}$ to script $X_{A,i} \lor (\tau \land X_B)$
 - $T_{B,i}^{cl}$ sends $Bal_{A,i}$ to X_A and $Bal_{B,i}$ to script $\widehat{X}_{B,i} \lor (\tau \land X_A)$
- once the opening transaction and the *n* closing transaction pairs have been created, they include the opening transaction in the blockchain

- to establish the contract, Alice and Bob create an opening transaction $\mathcal{T}^{\mathrm{op}}$ sending funds to a 2-of-2 multisig address
- they also create *n* pairs of closing transactions: $T_{A,i}^{cl}$ for Alice and $T_{B,i}^{cl}$ for Bob
- let Bal_{A,i} and Bal_{B,i} be the balances of Alice and Bob in case E_i happens; then:
 - $T_{A,i}^{cl}$ sends $Bal_{B,i}$ to X_B and $Bal_{A,i}$ to script $\widehat{X}_{A,i} \lor (\tau \land X_B)$
 - $T_{B,i}^{cl}$ sends $Bal_{A,i}$ to X_A and $Bal_{B,i}$ to script $\widehat{X}_{B,i} \lor (\tau \land X_A)$
- once the opening transaction and the *n* closing transaction pairs have been created, they include the opening transaction in the blockchain

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

- to establish the contract, Alice and Bob create an opening transaction $\mathcal{T}^{\mathrm{op}}$ sending funds to a 2-of-2 multisig address
- they also create *n* pairs of closing transactions: $T_{A,i}^{cl}$ for Alice and $T_{B,i}^{cl}$ for Bob
- let Bal_{A,i} and Bal_{B,i} be the balances of Alice and Bob in case E_i happens; then:
 - $T_{A,i}^{\text{cl}}$ sends $\text{Bal}_{B,i}$ to X_B and $\text{Bal}_{A,i}$ to script $\widehat{X}_{A,i} \lor (\tau \land X_B)$
 - $T_{B,i}^{cl}$ sends $\operatorname{Bal}_{A,i}$ to X_A and $\operatorname{Bal}_{B,i}$ to script $\widehat{X}_{B,i} \lor (\tau \land X_A)$
- once the opening transaction and the *n* closing transaction pairs have been created, they include the opening transaction in the blockchain

- to establish the contract, Alice and Bob create an opening transaction $\mathcal{T}^{\mathrm{op}}$ sending funds to a 2-of-2 multisig address
- they also create *n* pairs of closing transactions: $T_{A,i}^{cl}$ for Alice and $T_{B,i}^{cl}$ for Bob
- let Bal_{A,i} and Bal_{B,i} be the balances of Alice and Bob in case E_i happens; then:
 - $T_{A,i}^{\text{cl}}$ sends $\text{Bal}_{B,i}$ to X_B and $\text{Bal}_{A,i}$ to script $\widehat{X}_{A,i} \lor (\tau \land X_B)$
 - $T_{B,i}^{\text{cl}}$ sends $\text{Bal}_{A,i}$ to X_A and $\text{Bal}_{B,i}$ to script $\widehat{X}_{B,i} \lor (\tau \land X_A)$
- once the opening transaction and the *n* closing transaction pairs have been created, they include the opening transaction in the blockchain

More Schnorr Tricks for Bitcoin

- to establish the contract, Alice and Bob create an opening transaction $\mathcal{T}^{\mathrm{op}}$ sending funds to a 2-of-2 multisig address
- they also create *n* pairs of closing transactions: $T_{A,i}^{cl}$ for Alice and $T_{B,i}^{cl}$ for Bob
- let Bal_{A,i} and Bal_{B,i} be the balances of Alice and Bob in case E_i happens; then:
 - $T_{A,i}^{\text{cl}}$ sends $\text{Bal}_{B,i}$ to X_B and $\text{Bal}_{A,i}$ to script $\widehat{X}_{A,i} \lor (\tau \land X_B)$
 - $T_{B,i}^{\text{cl}}$ sends $\text{Bal}_{A,i}$ to X_A and $\text{Bal}_{B,i}$ to script $\widehat{X}_{B,i} \lor (\tau \land X_A)$
- once the opening transaction and the *n* closing transaction pairs have been created, they include the opening transaction in the blockchain

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

norr

root

DLC: Executing the contract

- when the external event happens, Olivia signs the observed outcome $E_{\overline{\imath}},$ revealing $s_{\overline{\imath}}$
- Alice and Bob can compute resp. x_A + s_i and x_B + s_i; one of them (e.g. Alice) broadcasts the corresponding closing transaction T^{cl}_{A,i}; then:
 - Alice can claim Bal_{A,ī} using $\widehat{X}_{A,\overline{i}} = (x_A + s_{\overline{i}})G$
 - Bob can claim $\operatorname{Bal}_{B,\overline{i}}$ using X_B
- if Bob tries to cheat and sends an incorrect closing transaction $T_{B,j}^{\text{cl}}, j \neq \overline{\imath}$, he is unable to claim the output worth $\text{Bal}_{B,j}$ controlled by script $\widehat{X}_{B,j} \lor (\tau \land X_A)$, which can be claimed by Alice after time τ
- NB: funds cannot be locked (Alice's closing transactions always return all funds to Bob after time τ and vice-versa)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

DLC: Executing the contract

- when the external event happens, Olivia signs the observed outcome $E_{\overline{\imath}},$ revealing $s_{\overline{\imath}}$
- Alice and Bob can compute resp. $x_A + s_{\overline{i}}$ and $x_B + s_{\overline{i}}$; one of them (e.g. Alice) broadcasts the corresponding closing transaction $T_{A,\overline{i}}^{cl}$; then:
 - Alice can claim $\operatorname{Bal}_{A,\overline{\imath}}$ using $\widehat{X}_{A,\overline{\imath}} = (x_A + s_{\overline{\imath}})G$
 - Bob can claim $\operatorname{Bal}_{B,\overline{\imath}}$ using X_B
- if Bob tries to cheat and sends an incorrect closing transaction $T_{B,j}^{\text{cl}}, j \neq \overline{\imath}$, he is unable to claim the output worth $\text{Bal}_{B,j}$ controlled by script $\widehat{X}_{B,j} \lor (\tau \land X_A)$, which can be claimed by Alice after time τ
- NB: funds cannot be locked (Alice's closing transactions always return all funds to Bob after time τ and vice-versa)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

DLC: Executing the contract

- when the external event happens, Olivia signs the observed outcome $E_{\overline{\imath}},$ revealing $s_{\overline{\imath}}$
- Alice and Bob can compute resp. $x_A + s_{\overline{i}}$ and $x_B + s_{\overline{i}}$; one of them (e.g. Alice) broadcasts the corresponding closing transaction $T_{A,\overline{i}}^{cl}$; then:
 - Alice can claim $\operatorname{Bal}_{A,\overline{\imath}}$ using $\widehat{X}_{A,\overline{\imath}} = (x_A + s_{\overline{\imath}})G$
 - Bob can claim $\operatorname{Bal}_{B,\overline{\imath}}$ using X_B
- if Bob tries to cheat and sends an incorrect closing transaction $T_{B,j}^{\text{cl}}, j \neq \overline{\imath}$, he is unable to claim the output worth $\text{Bal}_{B,j}$ controlled by script $\widehat{X}_{B,j} \lor (\tau \land X_A)$, which can be claimed by Alice after time τ
- NB: funds cannot be locked (Alice's closing transactions always return all funds to Bob after time τ and vice-versa)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

DLC: Executing the contract

- when the external event happens, Olivia signs the observed outcome $E_{\overline{\imath}},$ revealing $s_{\overline{\imath}}$
- Alice and Bob can compute resp. $x_A + s_{\overline{i}}$ and $x_B + s_{\overline{i}}$; one of them (e.g. Alice) broadcasts the corresponding closing transaction $T_{A,\overline{i}}^{cl}$; then:
 - Alice can claim $\operatorname{Bal}_{A,\overline{\imath}}$ using $\widehat{X}_{A,\overline{\imath}} = (x_A + s_{\overline{\imath}})G$
 - Bob can claim $\operatorname{Bal}_{B,\overline{\imath}}$ using X_B
- if Bob tries to cheat and sends an incorrect closing transaction *T*^{cl}_{B,j}, *j* ≠ *ī*, he is unable to claim the output worth Bal_{B,j} controlled by script *X*_{B,j} ∨ (*τ* ∧ *X*_A), which can be claimed by Alice after time *τ*
- NB: funds cannot be locked (Alice's closing transactions always return all funds to Bob after time τ and vice-versa)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

DLC: Executing the contract

- when the external event happens, Olivia signs the observed outcome $E_{\overline{\imath}},$ revealing $s_{\overline{\imath}}$
- Alice and Bob can compute resp. $x_A + s_{\bar{\imath}}$ and $x_B + s_{\bar{\imath}}$; one of them (e.g. Alice) broadcasts the corresponding closing transaction $T_{A,\bar{\imath}}^{cl}$; then:
 - Alice can claim $\operatorname{Bal}_{A,\overline{\imath}}$ using $\widehat{X}_{A,\overline{\imath}} = (x_A + s_{\overline{\imath}})G$
 - Bob can claim $\operatorname{Bal}_{B,\overline{\imath}}$ using X_B
- if Bob tries to cheat and sends an incorrect closing transaction $T_{B,j}^{\text{cl}}$, $j \neq \overline{\imath}$, he is unable to claim the output worth $\text{Bal}_{B,j}$ controlled by script $\widehat{X}_{B,j} \lor (\tau \land X_A)$, which can be claimed by Alice after time τ
- NB: funds cannot be locked (Alice's closing transactions always return all funds to Bob after time *τ* and vice-versa)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

DLC: Executing the contract

- when the external event happens, Olivia signs the observed outcome $E_{\overline{\imath}},$ revealing $s_{\overline{\imath}}$
- Alice and Bob can compute resp. $x_A + s_{\bar{\imath}}$ and $x_B + s_{\bar{\imath}}$; one of them (e.g. Alice) broadcasts the corresponding closing transaction $T_{A,\bar{\imath}}^{cl}$; then:
 - Alice can claim $\operatorname{Bal}_{A,\overline{\imath}}$ using $\widehat{X}_{A,\overline{\imath}} = (x_A + s_{\overline{\imath}})G$
 - Bob can claim $\operatorname{Bal}_{B,\overline{\imath}}$ using X_B
- if Bob tries to cheat and sends an incorrect closing transaction $T_{B,j}^{\text{cl}}$, $j \neq \overline{\imath}$, he is unable to claim the output worth $\text{Bal}_{B,j}$ controlled by script $\widehat{X}_{B,j} \lor (\tau \land X_A)$, which can be claimed by Alice after time τ
- NB: funds cannot be locked (Alice's closing transactions always return all funds to Bob after time τ and vice-versa)

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

Refresher: Schnorr Signatures and MuSig

Taproot

Scriptless Scripts

Discreet Log Contracts

Conclusion

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

• Schnorr signatures can help improve privacy and fungibility:

- multisigs made indistinguishable from P2PKH (MuSig)
- complex scripts made indistinguishable from P2PKH (Taproot)
- stealthy enforcement of contracts (Scriptless Scripts, Discreet Log Contracts)
- all this also implies space and computational gains (less data to verify and store in the blockchain)
- BIP for Schnorr is currently under review

• Schnorr signatures can help improve privacy and fungibility:

- multisigs made indistinguishable from P2PKH (MuSig)
- complex scripts made indistinguishable from P2PKH (Taproot)
- stealthy enforcement of contracts (Scriptless Scripts, Discreet Log Contracts)
- all this also implies space and computational gains (less data to verify and store in the blockchain)
- BIP for Schnorr is currently under review

• Schnorr signatures can help improve privacy and fungibility:

- multisigs made indistinguishable from P2PKH (MuSig)
- complex scripts made indistinguishable from P2PKH (Taproot)
- stealthy enforcement of contracts (Scriptless Scripts, Discreet Log Contracts)
- all this also implies space and computational gains (less data to verify and store in the blockchain)
- BIP for Schnorr is currently under review

- Schnorr signatures can help improve privacy and fungibility:
 - multisigs made indistinguishable from P2PKH (MuSig)
 - complex scripts made indistinguishable from P2PKH (Taproot)
 - stealthy enforcement of contracts (Scriptless Scripts, Discreet Log Contracts)
- all this also implies space and computational gains (less data to verify and store in the blockchain)
- BIP for Schnorr is currently under review

- Schnorr signatures can help improve privacy and fungibility:
 - multisigs made indistinguishable from P2PKH (MuSig)
 - complex scripts made indistinguishable from P2PKH (Taproot)
 - stealthy enforcement of contracts (Scriptless Scripts, Discreet Log Contracts)
- all this also implies space and computational gains (less data to verify and store in the blockchain)
- BIP for Schnorr is currently under review

- Schnorr signatures can help improve privacy and fungibility:
 - multisigs made indistinguishable from P2PKH (MuSig)
 - complex scripts made indistinguishable from P2PKH (Taproot)
 - stealthy enforcement of contracts (Scriptless Scripts, Discreet Log Contracts)
- all this also implies space and computational gains (less data to verify and store in the blockchain)
- BIP for Schnorr is currently under review

Thanks for your attention!

Comments or questions?

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin

References

References I

- Thaddeus Dryja. Discreet Log Contracts, 2017. Available at https://adiabat.github.io/dlc.pdf.
- Adam Gibson. Flipping the scriptless script on Schnorr, 2017. Available at https://joinmarket.me/blog/blog/ flipping-the-scriptless-script-on-schnorr.
- Gregory Maxwell. Taproot: Privacy preserving switchable scripting, January 2018. Post on Bitcoin development mailing list, https://lists.linuxfoundation.org/pipermail/bitcoin-dev/ 2018-January/015614.html.
 - Tier Nolan. Alt chains and atomic transfers, May 2013. BitcoinTalk post, https://bitcointalk.org/index.php?topic=193281.0.
 - Jeremy Rubin, Manali Naik, and Nitya Subramanian. Merkelized Abstract Syntax Trees, 2014. Available at https://rubin.io/public/pdfs/858report.pdf.

References

References II

Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In Advances in Cryptology - CRYPTO '89, pages 239–252.

Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptology, 4(3):161–174, 1991.

Y. Seurin (ANSSI)

More Schnorr Tricks for Bitcoin