
Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Efficiency and Privacy Improvements for Bitcoin
with Schnorr Signatures

Yannick Seurin
(Based on joint work with

G. Maxwell, A. Poelstra, and P. Wuille)

Agence nationale de la sécurité des systèmes d’information

September 20, 2018 — “BlockSem” Seminar

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 1 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Motivation: scalability problems

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 2 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bitcoin transactions
A Bitcoin transaction spends inputs and creates outputs:
• an input consists of a reference to an output of a previous
transaction and a signature authorizing spending of this output

• an output consists of an amount and a public key

txid: e62b0a. . .

Inputs Outputs

prevOut: {txid = 29a5c7. . . , ind=3}
sig: 3f4de6. . .

3 BTC

prevOut: {txid = 63ba6f. . . , ind=1}
sig: f7b6c4. . .

1 BTC

prevOut: {txid = e953b0. . . , ind=7}
sig: fbb521. . .

5 BTC

val: 4 BTC
pubKey: 601b3a. . .

val: 4 BTC
pubKey: d781a3. . .

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 3 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bitcoin transactions
A Bitcoin transaction spends inputs and creates outputs:
• an input consists of a reference to an output of a previous
transaction and a signature authorizing spending of this output

• an output consists of an amount and a public key

txid: e62b0a. . .

Inputs Outputs

prevOut: {txid = 29a5c7. . . , ind=3}
sig: 3f4de6. . .

3 BTC

prevOut: {txid = 63ba6f. . . , ind=1}
sig: f7b6c4. . .

1 BTC

prevOut: {txid = e953b0. . . , ind=7}
sig: fbb521. . .

5 BTC

val: 4 BTC
pubKey: 601b3a. . .

val: 4 BTC
pubKey: d781a3. . .

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 3 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bitcoin transactions
A Bitcoin transaction spends inputs and creates outputs:
• an input consists of a reference to an output of a previous
transaction and a signature authorizing spending of this output

• an output consists of an amount and a public key

txid: e62b0a. . .

Inputs Outputs

prevOut: {txid = 29a5c7. . . , ind=3}
sig: 3f4de6. . .

3 BTC

prevOut: {txid = 63ba6f. . . , ind=1}
sig: f7b6c4. . .

1 BTC

prevOut: {txid = e953b0. . . , ind=7}
sig: fbb521. . .

5 BTC

val: 4 BTC
pubKey: 601b3a. . .

val: 4 BTC
pubKey: d781a3. . .

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 3 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signatures in Bitcoin

• to spend an output, users must provide a signature proving
ownership

• spending a P2PKH output requires one signature
• spending a m-of-n multisig output (P2MS or P2SH) requires m
signatures (and n public keys)

• signature data ⇒ transaction data ⇒ transaction fees (BTC/byte)
• typical size of an ECDSA signature over secp256k1 (two 32-bytes
integers + 6 bytes DER encoding) = 72 bytes

• 300 000 000 transactions in the blockchain, ∼ 2 inputs/tx
⇒ at least 54 GB of signature data (28% blockchain size)

• could we use less signatures and less public keys without harming
security?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 4 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signatures in Bitcoin

• to spend an output, users must provide a signature proving
ownership

• spending a P2PKH output requires one signature
• spending a m-of-n multisig output (P2MS or P2SH) requires m
signatures (and n public keys)

• signature data ⇒ transaction data ⇒ transaction fees (BTC/byte)
• typical size of an ECDSA signature over secp256k1 (two 32-bytes
integers + 6 bytes DER encoding) = 72 bytes

• 300 000 000 transactions in the blockchain, ∼ 2 inputs/tx
⇒ at least 54 GB of signature data (28% blockchain size)

• could we use less signatures and less public keys without harming
security?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 4 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signatures in Bitcoin

• to spend an output, users must provide a signature proving
ownership

• spending a P2PKH output requires one signature
• spending a m-of-n multisig output (P2MS or P2SH) requires m
signatures (and n public keys)

• signature data ⇒ transaction data ⇒ transaction fees (BTC/byte)
• typical size of an ECDSA signature over secp256k1 (two 32-bytes
integers + 6 bytes DER encoding) = 72 bytes

• 300 000 000 transactions in the blockchain, ∼ 2 inputs/tx
⇒ at least 54 GB of signature data (28% blockchain size)

• could we use less signatures and less public keys without harming
security?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 4 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signatures in Bitcoin

• to spend an output, users must provide a signature proving
ownership

• spending a P2PKH output requires one signature
• spending a m-of-n multisig output (P2MS or P2SH) requires m
signatures (and n public keys)

• signature data ⇒ transaction data ⇒ transaction fees (BTC/byte)
• typical size of an ECDSA signature over secp256k1 (two 32-bytes
integers + 6 bytes DER encoding) = 72 bytes

• 300 000 000 transactions in the blockchain, ∼ 2 inputs/tx
⇒ at least 54 GB of signature data (28% blockchain size)

• could we use less signatures and less public keys without harming
security?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 4 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signatures in Bitcoin

• to spend an output, users must provide a signature proving
ownership

• spending a P2PKH output requires one signature
• spending a m-of-n multisig output (P2MS or P2SH) requires m
signatures (and n public keys)

• signature data ⇒ transaction data ⇒ transaction fees (BTC/byte)
• typical size of an ECDSA signature over secp256k1 (two 32-bytes
integers + 6 bytes DER encoding) = 72 bytes

• 300 000 000 transactions in the blockchain, ∼ 2 inputs/tx
⇒ at least 54 GB of signature data (28% blockchain size)

• could we use less signatures and less public keys without harming
security?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 4 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signatures in Bitcoin

• to spend an output, users must provide a signature proving
ownership

• spending a P2PKH output requires one signature
• spending a m-of-n multisig output (P2MS or P2SH) requires m
signatures (and n public keys)

• signature data ⇒ transaction data ⇒ transaction fees (BTC/byte)
• typical size of an ECDSA signature over secp256k1 (two 32-bytes
integers + 6 bytes DER encoding) = 72 bytes

• 300 000 000 transactions in the blockchain, ∼ 2 inputs/tx
⇒ at least 54 GB of signature data (28% blockchain size)

• could we use less signatures and less public keys without harming
security?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 4 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signatures in Bitcoin

• to spend an output, users must provide a signature proving
ownership

• spending a P2PKH output requires one signature
• spending a m-of-n multisig output (P2MS or P2SH) requires m
signatures (and n public keys)

• signature data ⇒ transaction data ⇒ transaction fees (BTC/byte)
• typical size of an ECDSA signature over secp256k1 (two 32-bytes
integers + 6 bytes DER encoding) = 72 bytes

• 300 000 000 transactions in the blockchain, ∼ 2 inputs/tx
⇒ at least 54 GB of signature data (28% blockchain size)

• could we use less signatures and less public keys without harming
security?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 4 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

MuSig: Schnorr-based multi-signatures

https://eprint.iacr.org/2018/068.pdf
Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 5 / 41

https://eprint.iacr.org/2018/068.pdf

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Outline

Signature Schemes: Schnorr versus ECDSA

Signature and Key Aggregation

Other Applications

Conclusion

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 6 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Outline

Signature Schemes: Schnorr versus ECDSA

Signature and Key Aggregation

Other Applications

Conclusion

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 7 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

History of discrete log-based signature schemes

• 1984: ElGamal signatures
• 1985: Elliptic Curve Cryptography proposed by
Koblitz and Miller

• 1989: Schnorr signatures, U.S. Patent 4,995,082
• 1991: DSA (Digital Signature Algorithm) proposed
by NIST

• 1992: ECDSA (Elliptic Curve DSA) proposed by
Vanstone

• 1993: DSA standardized by NIST as FIPS 186
• 2000: ECDSA included in FIPS 186-2
• 2008: Schnorr’s patent expires
• 2009: Bitcoin is launched

C.P. Schnorr

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 8 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: definition

A signature scheme consists of three algorithms:
1. key generation algorithm Gen:

• returns a public/secret key pair (pk, sk)
2. signature algorithm Sign:

• takes as input a secret key sk and a message m
• returns a signature σ

3. verification algorithm Ver:
• takes as input a public key pk, a message m, and a signature σ
• returns 1 if the signature is valid and 0 otherwise

Correctness property:

∀(pk, sk)← Gen, ∀m, Ver
(
pk,m, Sign(sk,m)

)
= 1

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 9 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: definition

A signature scheme consists of three algorithms:
1. key generation algorithm Gen:

• returns a public/secret key pair (pk, sk)
2. signature algorithm Sign:

• takes as input a secret key sk and a message m
• returns a signature σ

3. verification algorithm Ver:
• takes as input a public key pk, a message m, and a signature σ
• returns 1 if the signature is valid and 0 otherwise

Correctness property:

∀(pk, sk)← Gen, ∀m, Ver
(
pk,m, Sign(sk,m)

)
= 1

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 9 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA pkA

m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA pkA
m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA pkA
m1

σ1

...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA pkA
m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA pkA
m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA

pkA
m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA

pkA
m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA

pkA
m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Signature scheme: security

skA

pkA
m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 10 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Mathematical background

Cyclic group and generator
Let G be an abelian group of order p. An element G ∈ G is called a
generator if

〈G〉 def= {0G , 1G , 2G , . . .} = G.

If G is a generator, then for any X ∈ G, there exists a unique
x ∈ {0, . . . , p − 1} such that X = xG .

Discrete logarithm problem
Given X ∈ G, find x ∈ {0, . . . , p − 1} such that X = xG .

NB: with multiplicative notation, xG ∼ Gx

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 11 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Mathematical background

Cyclic group and generator
Let G be an abelian group of order p. An element G ∈ G is called a
generator if

〈G〉 def= {0G , 1G , 2G , . . .} = G.

If G is a generator, then for any X ∈ G, there exists a unique
x ∈ {0, . . . , p − 1} such that X = xG .

Discrete logarithm problem
Given X ∈ G, find x ∈ {0, . . . , p − 1} such that X = xG .

NB: with multiplicative notation, xG ∼ Gx

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 11 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr authentication protocol [Sch89, Sch91]

Public parameters: a cyclic group G
of prime order p, a generator G of G{

skAlice = x ←$ Zp
pkAlice = xG = X pkAlice = X

r ←$ Zp, R = rG R

c ←$ Zp
c

s = r + cx mod p s
Check sG ?= R + cX

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 12 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr’s protocol is a “proof of knowledge”

Theorem
Schnorr’s protocol is secure against impersonation under the discrete
logarithm assumption.

Proof.
• assume there exists an attacker A which is able to authenticate
with good probability

• we run A on public key X : it sends R = rG , we answer with c1,
and A returns the correct answer s1 = r + c1x mod p

• we rewind A and run it again: it sends R = rG , we answer with
c2 6= c1, and A returns the correct answer s2 = r + c2x mod p

• we compute x = (s1 − s2)(c1 − c2)−1 mod p

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 13 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 14 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 15 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 15 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 15 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 15 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 15 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Generic” DSA signatures

• public parameters:
• a cyclic group G of prime order p and a generator G
• a hash function H
• a “conversion” function f : G→ Zp

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = f (R) and s = r−1(H(m) + cx) mod p
• output σ = (c, s)

• verification: on input X , m and σ = (c, s),
• compute u = H(m)s−1 mod p, v = cs−1 mod p, and R = uG + vX
• check whether f (R) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 16 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Generic” DSA signatures

• public parameters:
• a cyclic group G of prime order p and a generator G
• a hash function H
• a “conversion” function f : G→ Zp

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = f (R) and s = r−1(H(m) + cx) mod p
• output σ = (c, s)

• verification: on input X , m and σ = (c, s),
• compute u = H(m)s−1 mod p, v = cs−1 mod p, and R = uG + vX
• check whether f (R) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 16 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Generic” DSA signatures

• public parameters:
• a cyclic group G of prime order p and a generator G
• a hash function H
• a “conversion” function f : G→ Zp

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = f (R) and s = r−1(H(m) + cx) mod p
• output σ = (c, s)

• verification: on input X , m and σ = (c, s),
• compute u = H(m)s−1 mod p, v = cs−1 mod p, and R = uG + vX
• check whether f (R) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 16 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Generic” DSA signatures

• public parameters:
• a cyclic group G of prime order p and a generator G
• a hash function H
• a “conversion” function f : G→ Zp

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = f (R) and s = r−1(H(m) + cx) mod p
• output σ = (c, s)

• verification: on input X , m and σ = (c, s),
• compute u = H(m)s−1 mod p, v = cs−1 mod p, and R = uG + vX
• check whether f (R) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 16 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

(EC)DSA signatures
DSA and ECDSA are instantiations of the “generic” DSA scheme:
• for DSA:

• G = cyclic subgroup of prime order p of Z∗q for some large prime q
(|q| ≥ 3072 bits)

• conversion function: f (X) = X mod p
• for ECDSA:

• G = cyclic subgroup of prime order p of an elliptic curve group over
some finite field (Fq for q prime or q = 2n)

• for q prime, group elements are pairs of integers (x , y) ∈ F2
q

satisfying the curve equation E : y2 = x3 + ax + b
• conversion function: f (X) = x mod p where X = (x , y)
• Bitcoin uses curve secp256k1 [SEC10] (not a NIST curve!)

(Standards for Efficient Cryptography, Koblitz curve over prime field
Fq where q = 2256 − 232 − 977, a = 0, b = 7)

• Schnorr can be based on any group where DL is hard, in part. on
any secure elliptic curve group (Ed25519 [BDL+11]?)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 17 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

(EC)DSA signatures
DSA and ECDSA are instantiations of the “generic” DSA scheme:
• for DSA:

• G = cyclic subgroup of prime order p of Z∗q for some large prime q
(|q| ≥ 3072 bits)

• conversion function: f (X) = X mod p
• for ECDSA:

• G = cyclic subgroup of prime order p of an elliptic curve group over
some finite field (Fq for q prime or q = 2n)

• for q prime, group elements are pairs of integers (x , y) ∈ F2
q

satisfying the curve equation E : y2 = x3 + ax + b
• conversion function: f (X) = x mod p where X = (x , y)
• Bitcoin uses curve secp256k1 [SEC10] (not a NIST curve!)

(Standards for Efficient Cryptography, Koblitz curve over prime field
Fq where q = 2256 − 232 − 977, a = 0, b = 7)

• Schnorr can be based on any group where DL is hard, in part. on
any secure elliptic curve group (Ed25519 [BDL+11]?)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 17 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

(EC)DSA signatures
DSA and ECDSA are instantiations of the “generic” DSA scheme:
• for DSA:

• G = cyclic subgroup of prime order p of Z∗q for some large prime q
(|q| ≥ 3072 bits)

• conversion function: f (X) = X mod p
• for ECDSA:

• G = cyclic subgroup of prime order p of an elliptic curve group over
some finite field (Fq for q prime or q = 2n)

• for q prime, group elements are pairs of integers (x , y) ∈ F2
q

satisfying the curve equation E : y2 = x3 + ax + b
• conversion function: f (X) = x mod p where X = (x , y)
• Bitcoin uses curve secp256k1 [SEC10] (not a NIST curve!)

(Standards for Efficient Cryptography, Koblitz curve over prime field
Fq where q = 2256 − 232 − 977, a = 0, b = 7)

• Schnorr can be based on any group where DL is hard, in part. on
any secure elliptic curve group (Ed25519 [BDL+11]?)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 17 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

(EC)DSA signatures
DSA and ECDSA are instantiations of the “generic” DSA scheme:
• for DSA:

• G = cyclic subgroup of prime order p of Z∗q for some large prime q
(|q| ≥ 3072 bits)

• conversion function: f (X) = X mod p
• for ECDSA:

• G = cyclic subgroup of prime order p of an elliptic curve group over
some finite field (Fq for q prime or q = 2n)

• for q prime, group elements are pairs of integers (x , y) ∈ F2
q

satisfying the curve equation E : y2 = x3 + ax + b
• conversion function: f (X) = x mod p where X = (x , y)
• Bitcoin uses curve secp256k1 [SEC10] (not a NIST curve!)

(Standards for Efficient Cryptography, Koblitz curve over prime field
Fq where q = 2256 − 232 − 977, a = 0, b = 7)

• Schnorr can be based on any group where DL is hard, in part. on
any secure elliptic curve group (Ed25519 [BDL+11]?)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 17 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

ECDSA signature malleability
• ECDSA is not strongly EUF-CMA
• given a valid signature (c, s) for message m, it is possible to “maul”
a different signature which is also valid, namely (c,−s mod p)

• verification equations:
(c, s) (c,−s)

u = H(m)s−1 mod p u′ = −H(m)s−1 mod p = −u
v = cs−1 mod p v ′ = −cs−1 mod p = −v
R = uG + vX R ′ = −uG − vX = −R

f (R) ?= c f (−R) ?= c
• verification succeeds in both cases because:

• if R = (x , y) then −R = (x ,−y mod q)
• f only depends on the first coordinate: f (x , y) = x mod p

• fixed by requiring a canonical “low-s” encoding
(Bitcoin PR #6769)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 18 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

ECDSA signature malleability
• ECDSA is not strongly EUF-CMA
• given a valid signature (c, s) for message m, it is possible to “maul”
a different signature which is also valid, namely (c,−s mod p)

• verification equations:
(c, s) (c,−s)

u = H(m)s−1 mod p u′ = −H(m)s−1 mod p = −u
v = cs−1 mod p v ′ = −cs−1 mod p = −v
R = uG + vX R ′ = −uG − vX = −R

f (R) ?= c f (−R) ?= c
• verification succeeds in both cases because:

• if R = (x , y) then −R = (x ,−y mod q)
• f only depends on the first coordinate: f (x , y) = x mod p

• fixed by requiring a canonical “low-s” encoding
(Bitcoin PR #6769)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 18 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

ECDSA signature malleability
• ECDSA is not strongly EUF-CMA
• given a valid signature (c, s) for message m, it is possible to “maul”
a different signature which is also valid, namely (c,−s mod p)

• verification equations:
(c, s) (c,−s)

u = H(m)s−1 mod p u′ = −H(m)s−1 mod p = −u
v = cs−1 mod p v ′ = −cs−1 mod p = −v
R = uG + vX R ′ = −uG − vX = −R

f (R) ?= c f (−R) ?= c
• verification succeeds in both cases because:

• if R = (x , y) then −R = (x ,−y mod q)
• f only depends on the first coordinate: f (x , y) = x mod p

• fixed by requiring a canonical “low-s” encoding
(Bitcoin PR #6769)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 18 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

ECDSA signature malleability
• ECDSA is not strongly EUF-CMA
• given a valid signature (c, s) for message m, it is possible to “maul”
a different signature which is also valid, namely (c,−s mod p)

• verification equations:
(c, s) (c,−s)

u = H(m)s−1 mod p u′ = −H(m)s−1 mod p = −u
v = cs−1 mod p v ′ = −cs−1 mod p = −v
R = uG + vX R ′ = −uG − vX = −R

f (R) ?= c f (−R) ?= c
• verification succeeds in both cases because:

• if R = (x , y) then −R = (x ,−y mod q)
• f only depends on the first coordinate: f (x , y) = x mod p

• fixed by requiring a canonical “low-s” encoding
(Bitcoin PR #6769)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 18 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

ECDSA signature malleability
• ECDSA is not strongly EUF-CMA
• given a valid signature (c, s) for message m, it is possible to “maul”
a different signature which is also valid, namely (c,−s mod p)

• verification equations:
(c, s) (c,−s)

u = H(m)s−1 mod p u′ = −H(m)s−1 mod p = −u
v = cs−1 mod p v ′ = −cs−1 mod p = −v
R = uG + vX R ′ = −uG − vX = −R

f (R) ?= c f (−R) ?= c
• verification succeeds in both cases because:

• if R = (x , y) then −R = (x ,−y mod q)
• f only depends on the first coordinate: f (x , y) = x mod p

• fixed by requiring a canonical “low-s” encoding
(Bitcoin PR #6769)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 18 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

ECDSA signature malleability
• ECDSA is not strongly EUF-CMA
• given a valid signature (c, s) for message m, it is possible to “maul”
a different signature which is also valid, namely (c,−s mod p)

• verification equations:
(c, s) (c,−s)

u = H(m)s−1 mod p u′ = −H(m)s−1 mod p = −u
v = cs−1 mod p v ′ = −cs−1 mod p = −v
R = uG + vX R ′ = −uG − vX = −R

f (R) ?= c f (−R) ?= c
• verification succeeds in both cases because:

• if R = (x , y) then −R = (x ,−y mod q)
• f only depends on the first coordinate: f (x , y) = x mod p

• fixed by requiring a canonical “low-s” encoding
(Bitcoin PR #6769)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 18 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

ECDSA signature malleability
• ECDSA is not strongly EUF-CMA
• given a valid signature (c, s) for message m, it is possible to “maul”
a different signature which is also valid, namely (c,−s mod p)

• verification equations:
(c, s) (c,−s)

u = H(m)s−1 mod p u′ = −H(m)s−1 mod p = −u
v = cs−1 mod p v ′ = −cs−1 mod p = −v
R = uG + vX R ′ = −uG − vX = −R

f (R) ?= c f (−R) ?= c
• verification succeeds in both cases because:

• if R = (x , y) then −R = (x ,−y mod q)
• f only depends on the first coordinate: f (x , y) = x mod p

• fixed by requiring a canonical “low-s” encoding
(Bitcoin PR #6769)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 18 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 19 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr versus ECDSA: Summary

Schnorr: σ = (R, s) ECDSA: σ = (c, s)
Ver sG ?= R + H(R,m)X f

(
H(m)s−1G + cs−1X

) ?= c
Fiat-Shamir X ×
sec. proof X ×

H 2nd preimage collision
non-mall. X ×
batch ver. X ×

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 20 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Outline

Signature Schemes: Schnorr versus ECDSA

Signature and Key Aggregation

Other Applications

Conclusion

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 21 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

What is a multi-signature protocol?

• assume n signers with public keys {pk1, . . . , pkn} want to sign the
same message (e.g., spending from an n-of-n multisig address)

• trivial solution: compute one signature for each pki and output
Σ = (σ1, . . . , σn)

• problem: the length of Σ grows linearly with the number of signers.
Can we do better? (Ideally, the size of the “multi-signature” should
be independent from the number of signers)

• well-studied problem in cryptography originally tackled in [IN83]
• hard to achieve for ECDSA due to its complex algebraic structure
(modular division)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 22 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

What is a multi-signature protocol?

• assume n signers with public keys {pk1, . . . , pkn} want to sign the
same message (e.g., spending from an n-of-n multisig address)

• trivial solution: compute one signature for each pki and output
Σ = (σ1, . . . , σn)

• problem: the length of Σ grows linearly with the number of signers.
Can we do better? (Ideally, the size of the “multi-signature” should
be independent from the number of signers)

• well-studied problem in cryptography originally tackled in [IN83]
• hard to achieve for ECDSA due to its complex algebraic structure
(modular division)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 22 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

What is a multi-signature protocol?

• assume n signers with public keys {pk1, . . . , pkn} want to sign the
same message (e.g., spending from an n-of-n multisig address)

• trivial solution: compute one signature for each pki and output
Σ = (σ1, . . . , σn)

• problem: the length of Σ grows linearly with the number of signers.
Can we do better? (Ideally, the size of the “multi-signature” should
be independent from the number of signers)

• well-studied problem in cryptography originally tackled in [IN83]
• hard to achieve for ECDSA due to its complex algebraic structure
(modular division)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 22 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

What is a multi-signature protocol?

• assume n signers with public keys {pk1, . . . , pkn} want to sign the
same message (e.g., spending from an n-of-n multisig address)

• trivial solution: compute one signature for each pki and output
Σ = (σ1, . . . , σn)

• problem: the length of Σ grows linearly with the number of signers.
Can we do better? (Ideally, the size of the “multi-signature” should
be independent from the number of signers)

• well-studied problem in cryptography originally tackled in [IN83]
• hard to achieve for ECDSA due to its complex algebraic structure
(modular division)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 22 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

What is a multi-signature protocol?

• assume n signers with public keys {pk1, . . . , pkn} want to sign the
same message (e.g., spending from an n-of-n multisig address)

• trivial solution: compute one signature for each pki and output
Σ = (σ1, . . . , σn)

• problem: the length of Σ grows linearly with the number of signers.
Can we do better? (Ideally, the size of the “multi-signature” should
be independent from the number of signers)

• well-studied problem in cryptography originally tackled in [IN83]
• hard to achieve for ECDSA due to its complex algebraic structure
(modular division)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 22 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
agg. key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 23 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Wait! Rogue-key attacks

• assume that signers can claim whatever public key they want
(plain public key model)

• Bob knows Alice’s public key X1

• he can “choose” public key X2 = x ′G − X1

• Bob can forge a valid multi-signature (R, s) on his own with x ′:

sG = R + H(X1,X2,R,m)︸ ︷︷ ︸
c

(X1 + X2)︸ ︷︷ ︸
x ′G

= (r + cx ′)G

• note that Bob does not know the private key for X2 = (x ′ − x1)G
• this can thwarted using a key setup procedure [MOR01] or by
requiring signers to prove knowledge of their private key (with a
zero-knowledge proof) [RY07]

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 24 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Wait! Rogue-key attacks

• assume that signers can claim whatever public key they want
(plain public key model)

• Bob knows Alice’s public key X1

• he can “choose” public key X2 = x ′G − X1

• Bob can forge a valid multi-signature (R, s) on his own with x ′:

sG = R + H(X1,X2,R,m)︸ ︷︷ ︸
c

(X1 + X2)︸ ︷︷ ︸
x ′G

= (r + cx ′)G

• note that Bob does not know the private key for X2 = (x ′ − x1)G
• this can thwarted using a key setup procedure [MOR01] or by
requiring signers to prove knowledge of their private key (with a
zero-knowledge proof) [RY07]

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 24 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Wait! Rogue-key attacks

• assume that signers can claim whatever public key they want
(plain public key model)

• Bob knows Alice’s public key X1

• he can “choose” public key X2 = x ′G − X1

• Bob can forge a valid multi-signature (R, s) on his own with x ′:

sG = R + H(X1,X2,R,m)︸ ︷︷ ︸
c

(X1 + X2)︸ ︷︷ ︸
x ′G

= (r + cx ′)G

• note that Bob does not know the private key for X2 = (x ′ − x1)G
• this can thwarted using a key setup procedure [MOR01] or by
requiring signers to prove knowledge of their private key (with a
zero-knowledge proof) [RY07]

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 24 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Wait! Rogue-key attacks

• assume that signers can claim whatever public key they want
(plain public key model)

• Bob knows Alice’s public key X1

• he can “choose” public key X2 = x ′G − X1

• Bob can forge a valid multi-signature (R, s) on his own with x ′:

sG = R + H(X1,X2,R,m)︸ ︷︷ ︸
c

(X1 + X2)︸ ︷︷ ︸
x ′G

= (r + cx ′)G

• note that Bob does not know the private key for X2 = (x ′ − x1)G
• this can thwarted using a key setup procedure [MOR01] or by
requiring signers to prove knowledge of their private key (with a
zero-knowledge proof) [RY07]

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 24 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Wait! Rogue-key attacks

• assume that signers can claim whatever public key they want
(plain public key model)

• Bob knows Alice’s public key X1

• he can “choose” public key X2 = x ′G − X1

• Bob can forge a valid multi-signature (R, s) on his own with x ′:

sG = R + H(X1,X2,R,m)︸ ︷︷ ︸
c

(X1 + X2)︸ ︷︷ ︸
x ′G

= (r + cx ′)G

• note that Bob does not know the private key for X2 = (x ′ − x1)G
• this can thwarted using a key setup procedure [MOR01] or by
requiring signers to prove knowledge of their private key (with a
zero-knowledge proof) [RY07]

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 24 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Wait! Rogue-key attacks

• assume that signers can claim whatever public key they want
(plain public key model)

• Bob knows Alice’s public key X1

• he can “choose” public key X2 = x ′G − X1

• Bob can forge a valid multi-signature (R, s) on his own with x ′:

sG = R + H(X1,X2,R,m)︸ ︷︷ ︸
c

(X1 + X2)︸ ︷︷ ︸
x ′G

= (r + cx ′)G

• note that Bob does not know the private key for X2 = (x ′ − x1)G
• this can thwarted using a key setup procedure [MOR01] or by
requiring signers to prove knowledge of their private key (with a
zero-knowledge proof) [RY07]

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 24 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 25 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

MuSig: key aggregation in the plain public key model
• variant of BN where the challenge for the i-th signer is

ci = H0(L,Xi)︸ ︷︷ ︸
ai

H1(X̃ ,R,m)︸ ︷︷ ︸
c

where X̃ =
n∑

i=1
H0(L,Xi)Xi

• partial signature si = ri + caixi mod p, s =
∑n

i=1 si mod p
• X̃ is called the aggregated key
• verification identical to “normal” signature with public key X̃ :

sG = R +
n∑

i=1
ciXi = R + H1(X̃ ,R,m)︸ ︷︷ ︸

c

n∑
i=1

H0(L,Xi)Xi︸ ︷︷ ︸
X̃

• variant with X̃ =
∑n

i=1 H0(Xi)Xi is insecure (Wagner’s algorithm)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 26 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

MuSig: key aggregation in the plain public key model
• variant of BN where the challenge for the i-th signer is

ci = H0(L,Xi)︸ ︷︷ ︸
ai

H1(X̃ ,R,m)︸ ︷︷ ︸
c

where X̃ =
n∑

i=1
H0(L,Xi)Xi

• partial signature si = ri + caixi mod p, s =
∑n

i=1 si mod p
• X̃ is called the aggregated key
• verification identical to “normal” signature with public key X̃ :

sG = R +
n∑

i=1
ciXi = R + H1(X̃ ,R,m)︸ ︷︷ ︸

c

n∑
i=1

H0(L,Xi)Xi︸ ︷︷ ︸
X̃

• variant with X̃ =
∑n

i=1 H0(Xi)Xi is insecure (Wagner’s algorithm)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 26 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

MuSig: key aggregation in the plain public key model
• variant of BN where the challenge for the i-th signer is

ci = H0(L,Xi)︸ ︷︷ ︸
ai

H1(X̃ ,R,m)︸ ︷︷ ︸
c

where X̃ =
n∑

i=1
H0(L,Xi)Xi

• partial signature si = ri + caixi mod p, s =
∑n

i=1 si mod p
• X̃ is called the aggregated key
• verification identical to “normal” signature with public key X̃ :

sG = R +
n∑

i=1
ciXi = R + H1(X̃ ,R,m)︸ ︷︷ ︸

c

n∑
i=1

H0(L,Xi)Xi︸ ︷︷ ︸
X̃

• variant with X̃ =
∑n

i=1 H0(Xi)Xi is insecure (Wagner’s algorithm)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 26 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

MuSig: key aggregation in the plain public key model
• variant of BN where the challenge for the i-th signer is

ci = H0(L,Xi)︸ ︷︷ ︸
ai

H1(X̃ ,R,m)︸ ︷︷ ︸
c

where X̃ =
n∑

i=1
H0(L,Xi)Xi

• partial signature si = ri + caixi mod p, s =
∑n

i=1 si mod p
• X̃ is called the aggregated key
• verification identical to “normal” signature with public key X̃ :

sG = R +
n∑

i=1
ciXi = R + H1(X̃ ,R,m)︸ ︷︷ ︸

c

n∑
i=1

H0(L,Xi)Xi︸ ︷︷ ︸
X̃

• variant with X̃ =
∑n

i=1 H0(Xi)Xi is insecure (Wagner’s algorithm)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 26 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

MuSig: key aggregation in the plain public key model
• variant of BN where the challenge for the i-th signer is

ci = H0(L,Xi)︸ ︷︷ ︸
ai

H1(X̃ ,R,m)︸ ︷︷ ︸
c

where X̃ =
n∑

i=1
H0(L,Xi)Xi

• partial signature si = ri + caixi mod p, s =
∑n

i=1 si mod p
• X̃ is called the aggregated key
• verification identical to “normal” signature with public key X̃ :

sG = R +
n∑

i=1
ciXi = R + H1(X̃ ,R,m)︸ ︷︷ ︸

c

n∑
i=1

H0(L,Xi)Xi︸ ︷︷ ︸
X̃

• variant with X̃ =
∑n

i=1 H0(Xi)Xi is insecure (Wagner’s algorithm)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 26 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 1: replacing OP_CHECKMULTISIG

• using MuSig, n-of-n multisig outputs can be replaced by standard
P2PKH output for the aggregated key X̃

• this improves privacy
• individual public keys are never revealed
• the resulting output is indistinguishable from a standard P2PKH

output
• for “threshold” m-of-n multisigs with m < n:

• build a Merkle tree where leaves are all
(n

m
)
possible aggregated

keys and only put the root in the ScriptPubKey
• to spend, give a Merkle proof of membership of some X̃ and a

signature valid for X̃

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 27 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 28 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• a secure IAS scheme requires “breaking the symmetry” for signers
with the same public key

• solution: modify BN to compute the challenge for i-th signer as

ci = H
(
{(X1,m1), . . . , (Xn,mn)},R, i

)
• the previous attack does not work since Alice computes

c1 = H({(Xa,m1), (Xa,m2)},R, 1)

whereas Bob must use

c2 = H({(Xa,m1), (Xa,m2)},R, 2)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 29 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• a secure IAS scheme requires “breaking the symmetry” for signers
with the same public key

• solution: modify BN to compute the challenge for i-th signer as

ci = H
(
{(X1,m1), . . . , (Xn,mn)},R, i

)
• the previous attack does not work since Alice computes

c1 = H({(Xa,m1), (Xa,m2)},R, 1)

whereas Bob must use

c2 = H({(Xa,m1), (Xa,m2)},R, 2)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 29 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Application 2: cross-input signature aggregation

• a secure IAS scheme requires “breaking the symmetry” for signers
with the same public key

• solution: modify BN to compute the challenge for i-th signer as

ci = H
(
{(X1,m1), . . . , (Xn,mn)},R, i

)
• the previous attack does not work since Alice computes

c1 = H({(Xa,m1), (Xa,m2)},R, 1)

whereas Bob must use

c2 = H({(Xa,m1), (Xa,m2)},R, 2)

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 29 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Benefits: Space savings

 0

 20

 40

 60

 80

 100

 120

 140

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

G
iB

Year

Bitcoin network: multi-signature savings

Actual blockchain size
Blockchain size with multi-signatures

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 30 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Benefits: UTXO set consolidation

• actors handling a large number of transactions can end up with a
large number of “dust” UTXOs (e.g. exchanges)

• they become impossible to spend when fees are too high
• cross-input signature aggregation allows to merge them into a
single UTXO with a single signature rather than one signature per
input ⇒ lower transaction fees

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 31 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Benefits: UTXO set consolidation

• actors handling a large number of transactions can end up with a
large number of “dust” UTXOs (e.g. exchanges)

• they become impossible to spend when fees are too high
• cross-input signature aggregation allows to merge them into a
single UTXO with a single signature rather than one signature per
input ⇒ lower transaction fees

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 31 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Benefits: UTXO set consolidation

• actors handling a large number of transactions can end up with a
large number of “dust” UTXOs (e.g. exchanges)

• they become impossible to spend when fees are too high
• cross-input signature aggregation allows to merge them into a
single UTXO with a single signature rather than one signature per
input ⇒ lower transaction fees

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 31 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Outline

Signature Schemes: Schnorr versus ECDSA

Signature and Key Aggregation

Other Applications

Conclusion

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 32 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Taproot (G. Maxwell)

• conditions for spending an output often of the form
(n parties agree to sign)︸ ︷︷ ︸

n-of-n multisig

OR (some more complex conditions)︸ ︷︷ ︸
script S

• this can be achieved indistinguishably from a standard P2PKH
output

• let X̃ be the MuSig aggregated key for the n parties
• output uses public key Y = X̃ + H(X̃ , S)G
• two ways to spend the output:

• the n parties agree to sign with Y (one of them simply adds a
corrective term cH(X̃ , S) to its partial signature)

• X̃ and S are revealed and a ScriptSig S ′ is provided; the network
checks X̃ + H(X̃ , S)G ?= Y and that S‖S ′ returns True

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 33 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Taproot (G. Maxwell)

• conditions for spending an output often of the form
(n parties agree to sign)︸ ︷︷ ︸

n-of-n multisig

OR (some more complex conditions)︸ ︷︷ ︸
script S

• this can be achieved indistinguishably from a standard P2PKH
output

• let X̃ be the MuSig aggregated key for the n parties
• output uses public key Y = X̃ + H(X̃ , S)G
• two ways to spend the output:

• the n parties agree to sign with Y (one of them simply adds a
corrective term cH(X̃ , S) to its partial signature)

• X̃ and S are revealed and a ScriptSig S ′ is provided; the network
checks X̃ + H(X̃ , S)G ?= Y and that S‖S ′ returns True

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 33 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Taproot (G. Maxwell)

• conditions for spending an output often of the form
(n parties agree to sign)︸ ︷︷ ︸

n-of-n multisig

OR (some more complex conditions)︸ ︷︷ ︸
script S

• this can be achieved indistinguishably from a standard P2PKH
output

• let X̃ be the MuSig aggregated key for the n parties
• output uses public key Y = X̃ + H(X̃ ,S)G
• two ways to spend the output:

• the n parties agree to sign with Y (one of them simply adds a
corrective term cH(X̃ , S) to its partial signature)

• X̃ and S are revealed and a ScriptSig S ′ is provided; the network
checks X̃ + H(X̃ , S)G ?= Y and that S‖S ′ returns True

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 33 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Taproot (G. Maxwell)

• conditions for spending an output often of the form
(n parties agree to sign)︸ ︷︷ ︸

n-of-n multisig

OR (some more complex conditions)︸ ︷︷ ︸
script S

• this can be achieved indistinguishably from a standard P2PKH
output

• let X̃ be the MuSig aggregated key for the n parties
• output uses public key Y = X̃ + H(X̃ ,S)G
• two ways to spend the output:

• the n parties agree to sign with Y (one of them simply adds a
corrective term cH(X̃ , S) to its partial signature)

• X̃ and S are revealed and a ScriptSig S ′ is provided; the network
checks X̃ + H(X̃ , S)G ?= Y and that S‖S ′ returns True

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 33 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Taproot (G. Maxwell)

• conditions for spending an output often of the form
(n parties agree to sign)︸ ︷︷ ︸

n-of-n multisig

OR (some more complex conditions)︸ ︷︷ ︸
script S

• this can be achieved indistinguishably from a standard P2PKH
output

• let X̃ be the MuSig aggregated key for the n parties
• output uses public key Y = X̃ + H(X̃ ,S)G
• two ways to spend the output:

• the n parties agree to sign with Y (one of them simply adds a
corrective term cH(X̃ , S) to its partial signature)

• X̃ and S are revealed and a ScriptSig S ′ is provided; the network
checks X̃ + H(X̃ , S)G ?= Y and that S‖S ′ returns True

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 33 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Taproot (G. Maxwell)

• conditions for spending an output often of the form
(n parties agree to sign)︸ ︷︷ ︸

n-of-n multisig

OR (some more complex conditions)︸ ︷︷ ︸
script S

• this can be achieved indistinguishably from a standard P2PKH
output

• let X̃ be the MuSig aggregated key for the n parties
• output uses public key Y = X̃ + H(X̃ ,S)G
• two ways to spend the output:

• the n parties agree to sign with Y (one of them simply adds a
corrective term cH(X̃ , S) to its partial signature)

• X̃ and S are revealed and a ScriptSig S ′ is provided; the network
checks X̃ + H(X̃ , S)G ?= Y and that S‖S ′ returns True

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 33 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Taproot (G. Maxwell)

• conditions for spending an output often of the form
(n parties agree to sign)︸ ︷︷ ︸

n-of-n multisig

OR (some more complex conditions)︸ ︷︷ ︸
script S

• this can be achieved indistinguishably from a standard P2PKH
output

• let X̃ be the MuSig aggregated key for the n parties
• output uses public key Y = X̃ + H(X̃ ,S)G
• two ways to spend the output:

• the n parties agree to sign with Y (one of them simply adds a
corrective term cH(X̃ , S) to its partial signature)

• X̃ and S are revealed and a ScriptSig S ′ is provided; the network
checks X̃ + H(X̃ , S)G ?= Y and that S‖S ′ returns True

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 33 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T)

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 34 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = xaG + Smi , resp. Xb,mi = xbG + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs, revealing smobs

• Alice and Bob can compute resp. xa + smobs and xb + smobs and
spend with public keys Xa,mobs and Xb,mobs

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 35 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = xaG + Smi , resp. Xb,mi = xbG + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs, revealing smobs

• Alice and Bob can compute resp. xa + smobs and xb + smobs and
spend with public keys Xa,mobs and Xb,mobs

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 35 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = xaG + Smi , resp. Xb,mi = xbG + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs, revealing smobs

• Alice and Bob can compute resp. xa + smobs and xb + smobs and
spend with public keys Xa,mobs and Xb,mobs

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 35 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = xaG + Smi , resp. Xb,mi = xbG + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs, revealing smobs

• Alice and Bob can compute resp. xa + smobs and xb + smobs and
spend with public keys Xa,mobs and Xb,mobs

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 35 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = xaG + Smi , resp. Xb,mi = xbG + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs, revealing smobs

• Alice and Bob can compute resp. xa + smobs and xb + smobs and
spend with public keys Xa,mobs and Xb,mobs

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 35 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = xaG + Smi , resp. Xb,mi = xbG + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs, revealing smobs

• Alice and Bob can compute resp. xa + smobs and xb + smobs and
spend with public keys Xa,mobs and Xb,mobs

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 35 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = xaG + Smi , resp. Xb,mi = xbG + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs, revealing smobs

• Alice and Bob can compute resp. xa + smobs and xb + smobs and
spend with public keys Xa,mobs and Xb,mobs

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 35 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = xaG + Smi , resp. Xb,mi = xbG + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs, revealing smobs

• Alice and Bob can compute resp. xa + smobs and xb + smobs and
spend with public keys Xa,mobs and Xb,mobs

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 35 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Outline

Signature Schemes: Schnorr versus ECDSA

Signature and Key Aggregation

Other Applications

Conclusion

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 36 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Conclusion

• Schnorr signatures can:
• reduce the size of transaction and speed up verification (lower cost,

less network overhead, . . .)
• improve privacy (private multisigs, incentive to use CoinJoin, . . .)
• enable fun new applications (Sciptless scripts, Discreet Log

Contracts, . . .)
• can be activated as a soft fork (thanks to Segwit script versioning)
• BIP for Schnorr is currently under review
• careful: any change to cryptographic algorithms requires A LOT of
analysis

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 37 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Conclusion

• Schnorr signatures can:
• reduce the size of transaction and speed up verification (lower cost,

less network overhead, . . .)
• improve privacy (private multisigs, incentive to use CoinJoin, . . .)
• enable fun new applications (Sciptless scripts, Discreet Log

Contracts, . . .)
• can be activated as a soft fork (thanks to Segwit script versioning)
• BIP for Schnorr is currently under review
• careful: any change to cryptographic algorithms requires A LOT of
analysis

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 37 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Conclusion

• Schnorr signatures can:
• reduce the size of transaction and speed up verification (lower cost,

less network overhead, . . .)
• improve privacy (private multisigs, incentive to use CoinJoin, . . .)
• enable fun new applications (Sciptless scripts, Discreet Log

Contracts, . . .)
• can be activated as a soft fork (thanks to Segwit script versioning)
• BIP for Schnorr is currently under review
• careful: any change to cryptographic algorithms requires A LOT of
analysis

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 37 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Conclusion

• Schnorr signatures can:
• reduce the size of transaction and speed up verification (lower cost,

less network overhead, . . .)
• improve privacy (private multisigs, incentive to use CoinJoin, . . .)
• enable fun new applications (Sciptless scripts, Discreet Log

Contracts, . . .)
• can be activated as a soft fork (thanks to Segwit script versioning)
• BIP for Schnorr is currently under review
• careful: any change to cryptographic algorithms requires A LOT of
analysis

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 37 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Conclusion

• Schnorr signatures can:
• reduce the size of transaction and speed up verification (lower cost,

less network overhead, . . .)
• improve privacy (private multisigs, incentive to use CoinJoin, . . .)
• enable fun new applications (Sciptless scripts, Discreet Log

Contracts, . . .)
• can be activated as a soft fork (thanks to Segwit script versioning)
• BIP for Schnorr is currently under review
• careful: any change to cryptographic algorithms requires A LOT of
analysis

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 37 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Conclusion

• Schnorr signatures can:
• reduce the size of transaction and speed up verification (lower cost,

less network overhead, . . .)
• improve privacy (private multisigs, incentive to use CoinJoin, . . .)
• enable fun new applications (Sciptless scripts, Discreet Log

Contracts, . . .)
• can be activated as a soft fork (thanks to Segwit script versioning)
• BIP for Schnorr is currently under review
• careful: any change to cryptographic algorithms requires A LOT of
analysis

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 37 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Conclusion

• Schnorr signatures can:
• reduce the size of transaction and speed up verification (lower cost,

less network overhead, . . .)
• improve privacy (private multisigs, incentive to use CoinJoin, . . .)
• enable fun new applications (Sciptless scripts, Discreet Log

Contracts, . . .)
• can be activated as a soft fork (thanks to Segwit script versioning)
• BIP for Schnorr is currently under review
• careful: any change to cryptographic algorithms requires A LOT of
analysis

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 37 / 41

Signature Schemes Signature and Key Aggregation Other Applications Conclusion

The end. . .

Thanks for your attention!

Comments or questions?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 38 / 41

References

References I

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-Speed High-Security Signatures. In Cryptographic Hardware and
Embedded Systems - CHES 2011, volume 6917 of LNCS, pages 124–142.
Springer, 2011.

Mihir Bellare and Gregory Neven. Multi-Signatures in the Plain Public-Key
Model and a General Forking Lemma. In ACM Conference on Computer and
Communications Security - CCS 2006, pages 390–399. ACM, 2006.

Daniel R. L. Brown. Generic Groups, Collision Resistance, and ECDSA. Des.
Codes Cryptography, 35(1):119–152, 2005.

Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Advances in Cryptology - CRYPTO
’86, volume 263 of LNCS, pages 186–194. Springer, 1986.

K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research and Development, 71:1–8, 1983.

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 39 / 41

References

References II

Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-Subgroup
Multisignatures. In ACM Conference on Computer and Communications
Security - CCS 2001, pages 245–254. ACM, 2001.

David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes.
In Advances in Cryptology - EUROCRYPT ’96, volume 1070 of LNCS, pages
387–398. Springer, 1996.

Thomas Ristenpart and Scott Yilek. The Power of Proofs-of-Possession:
Securing Multiparty Signatures against Rogue-Key Attacks. In Advances in
Cryptology - EUROCRYPT 2007, volume 4515 of LNCS, pages 228–245.
Springer, 2007.

Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards.
In Advances in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages
239–252. Springer, 1989.

Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. J.
Cryptology, 4(3):161–174, 1991.

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 40 / 41

References

References III

Certicom Research. SEC 2: Recommended Elliptic Curve Domain
Parameters, v2.0, 2010. Available at http://www.secg.org/sec2-v2.pdf.

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 20/09/2018 — BlockSem 41 / 41

http://www.secg.org/sec2-v2.pdf

	Signature Schemes: Schnorr versus ECDSA
	Signature and Key Aggregation
	Other Applications
	Conclusion
	Appendix

