Exploring the Code
Let us recall the proof system here before digging into the code:
The package directory is organized as follows:
zkhack-double-trouble
├── Cargo.toml
└── src
├── bin
│ └── verify-double-trouble.rs
├── inner_product_argument
│ ├── data_structures.rs
│ └── utils.rs
├── data.rs
├── inner_product_argument.rs
└── lib.rs
The proof system is implemented in the inner_product_argument
module of the library crate and follows closely the specification from the puzzle's description.
The puzzle uses the ark-ed-on-bls12-381 library which implements the so-called Jubjub curve developed by the Zcash team.
This curve was designed to have its base field equal to the scalar field of BLS12-381, allowing to efficiently prove statements about cryptographic schemes based on Jubjub (such a Pedersen commitments, Schnorr signatures, etc) using a proof system based on BLS12-381.
The affine group and the scalar field of this curve are brought into scope with
use ark_ed_on_bls12_381::{EdwardsAffine as GAffine, Fr};
Two structures Instance
and Witness
corresponding respectively to the instance and the witness are defined directly in src/inner_product_argument.rs:
pub struct Instance {
pub comm_a: GAffine,
pub b: Vec<Fr>,
}
pub struct Witness {
pub a: Vec<Fr>,
pub comm_a_rand: Fr,
}
Four additional structures are defined in src/inner_product_argument/data_structures.rs:
- the commitment key
CommitKey
- the proof commitment (first message sent by the prover in the interactive protocol)
ProofCommitment
- the proof response (second message sent by the prover in the interactive protocol)
ProofResponse
- and a fourth structure
Proof
which simply combinesProofCommitment
andProofResponse
.
Here is the code defining these four structures:
pub struct CommitKey {
pub generators: Vec<GAffine>,
pub hiding_generator: GAffine,
}
pub struct ProofCommitment {
pub comm_r: GAffine,
pub comm_1: GAffine,
pub comm_2: GAffine,
}
pub struct ProofResponse {
pub s: Vec<Fr>,
pub u: Fr,
pub t: Fr,
}
pub struct Proof {
pub commitment: ProofCommitment,
pub response: ProofResponse,
}
The rest of the code in the inner_product_argument
module and sub-modules does not show anything surprising.
As said in the puzzle description, the proof system is made non-interactive using the Fiat-Shamir transform.
Namely, the challenge is computed by hashing the commitment key, the instance, and the commitment:
let challenge = challenge(ck, instance, &commitment);
where function challenge
is defined in inner_product_argument/utils.rs:
pub fn b2s_hash_to_field<C: CanonicalSerialize>(input: &C) -> Fr {
let bytes = input.hash::<blake2::Blake2s>();
Fr::from_le_bytes_mod_order(&bytes)
}
pub fn challenge(ck: &CommitKey, instance: &Instance, proof_comm: &ProofCommitment) -> Fr {
b2s_hash_to_field(&(ck.clone(), instance.clone(), proof_comm.clone()))
}
Let's take a look at the binary crate and its main
function:
fn main() {
welcome();
puzzle(PUZZLE_DESCRIPTION);
let (ck, [instance_and_proof_1, instance_and_proof_2]) = puzzle_data();
let (instance1, proof1) = instance_and_proof_1;
let (instance2, proof2) = instance_and_proof_2;
assert!(verify(&ck, &instance1, &proof1));
assert!(verify(&ck, &instance2, &proof2));
let (a, comm_a_rand): (Vec<Fr>, Fr) = {
// Your solution here!
todo!()
};
assert_eq!(
ck.commit_with_explicit_randomness(&a, comm_a_rand),
instance1.comm_a
);
assert_eq!(
ck.commit_with_explicit_randomness(&a, comm_a_rand),
instance2.comm_a
);
}
The puzzle_data
function simply deserializes some data and returns a commitment key ck
and two instance/proof pairs.
We can print the structures we're interested in:
#![allow(unused, unreachable_code)]
use ark_ed_on_bls12_381::Fr;
use ark_ff::Field;
use double_trouble::data::puzzle_data;
use double_trouble::inner_product_argument::utils::challenge;
use double_trouble::verify;
use double_trouble::PUZZLE_DESCRIPTION;
use prompt::{puzzle, welcome};
// additional items brought into scope for puzzle solving
use double_trouble::CommitKey;
use ark_ec::AffineCurve;
fn main() {
welcome();
puzzle(PUZZLE_DESCRIPTION);
let (ck, [instance_and_proof_1, instance_and_proof_2]) = puzzle_data();
let (instance1, proof1) = instance_and_proof_1;
let (instance2, proof2) = instance_and_proof_2;
assert!(verify(&ck, &instance1, &proof1));
assert!(verify(&ck, &instance2, &proof2));
// --snip--
println!("commitment key:");
for (i, ck_i) in ck.generators.iter().enumerate() {
println!("ck.generators[{}] = {}", i, ck_i);
}
println!("ck.hiding_generator = {}\n", ck.hiding_generator);
println!("instance 1, C_a:\n {}\n", instance1.comm_a);
println!("instance 2, C_a:\n {}\n", instance2.comm_a);
println!("instance 1, b:");
for (i, b_i) in instance1.b.iter().enumerate() {
println!("instance1.b[{}] = {}", i, b_i);
}
println!("");
println!("instance 2, b:");
for (i, b_i) in instance2.b.iter().enumerate() {
println!("instance2.b[{}] = {}", i, b_i);
}
println!("");
// --snip--
assert_eq!(instance1, instance2);
assert_eq!(ck, CommitKey::sample(8));
// --snip--
println!("proof1, comm_r:\n {}", proof1.commitment.comm_r);
println!("proof1, comm_1:\n {}", proof1.commitment.comm_1);
println!("proof1, comm_2:\n {}\n", proof1.commitment.comm_2);
println!("proof2, comm_r:\n {}", proof2.commitment.comm_r);
println!("proof2, comm_1:\n {}", proof2.commitment.comm_1);
println!("proof2, comm_2:\n {}\n", proof2.commitment.comm_2);
// --snip--
if proof1.commitment.comm_r.mul(2) == proof2.commitment.comm_r {
println!("C_r in the second proof is twice C_r in the first proof\n");
}
// --snip--
let gamma1 = challenge(&ck, &instance1, &proof1.commitment);
let gamma2 = challenge(&ck, &instance2, &proof2.commitment);
let s1 = proof1.response.s;
let s2 = proof2.response.s;
let u1 = proof1.response.u;
let u2 = proof2.response.u;
let k = (gamma1 - Fr::from(2) * gamma2).inverse().unwrap();
let my_a: Vec<Fr> = s1
.iter()
.zip(s2.iter())
.map(|(c1, c2)| k * (gamma1 * c2 - Fr::from(2) * gamma2 * c1))
.collect();
let my_comm_a_rand = k * (gamma1 * u2 - Fr::from(2) * gamma2 * u1);
let (a, comm_a_rand): (Vec<Fr>, Fr) = {
// Your solution here!
(my_a, my_comm_a_rand)
};
assert_eq!(
ck.commit_with_explicit_randomness(&a, comm_a_rand),
instance1.comm_a
);
assert_eq!(
ck.commit_with_explicit_randomness(&a, comm_a_rand),
instance2.comm_a
);
println!("Puzzle solved!");
}
We get:
commitment key:
ck.generators[0] = GroupAffine(x=Fp256 "(198B8C3FC05A64DF64DEC6C0C9CF997E1AFA1DBB5C191ED0DFD5C771467F089D)", y=Fp256 "(5AE26A746DDBBCC5ECC3C970E715AEC48BB2551DD9DDE8AE7A7DA7032E161577)")
ck.generators[1] = GroupAffine(x=Fp256 "(4B92D491ACE817177026CD40C5020D04B30759F240CFDFF8DD795629E3307C5E)", y=Fp256 "(6604E7622969E8E968970E74DB648CF8226DCB0B67FF8E6313A3B9CAD7353701)")
ck.generators[2] = GroupAffine(x=Fp256 "(70F5E9698EF8F51B85D089DBBCC2F25190C905F6113976696F109307D347ACBA)", y=Fp256 "(3BD293E00769FE7963674BFA0745B4FE316AF189856418E679DBEF49B00A9085)")
ck.generators[3] = GroupAffine(x=Fp256 "(3FF005D6FE8FE85EA40051BF5051464AB69F0B587BE571B2800C08F4B93AD452)", y=Fp256 "(445D24D6D0EDEFC80B3785F27613FD072E4E69EBFC6A0B9716036F19E15C6ABF)")
ck.generators[4] = GroupAffine(x=Fp256 "(5174580F00FB73C60E3CA1D0A0EBF328FDAC3A018D15F6ED81B39D833927C079)", y=Fp256 "(26053B0E29A8E735673D8ACC0C0353EA6326DF6F81A2EE0AC65A8C1A853241F5)")
ck.generators[5] = GroupAffine(x=Fp256 "(65B0213A6DE2BC0DDAD9648179372A2B3939B06A1062CF0D58F731ABF7D6B742)", y=Fp256 "(11C6904D697A2638441B3125D0A3316507A03C16D79FCB3F5A19CF3ECFD649E6)")
ck.generators[6] = GroupAffine(x=Fp256 "(50644971731D58AFB54EB92D6F0C7700F06774B2AF10E72B646C0D5A93AA6347)", y=Fp256 "(1C282A3A58C4AD917587EBE68DC84A4CAC0E4A914FA83618439373528617AAAF)")
ck.generators[7] = GroupAffine(x=Fp256 "(3181568CB6D37D00412E3348F2C08C1579DB32492A768F41EAC49D8E7E6F9BBF)", y=Fp256 "(27EDAEA9068A61645B11E8D5C15E9569340E59E3963AE78CAADD2282451F10F4)")
ck.hiding_generator = GroupAffine(x=Fp256 "(3A2ED8E0E81BED90A83FA22E58FA8A0F08752AAB03CD4BA9BB558965B9A57B32)", y=Fp256 "(3C603EF0D0BB80987AD83208034C552F8919C5F8FEACC5404DEBCC16FE3B947F)")
instance 1, C_a:
GroupAffine(x=Fp256 "(6AE271E04FBB0AE9FB89506FF7180F5C06A8D60F802D934987965F694228BF8A)", y=Fp256 "(2BFBFA9CCF2151F01E71A069366DAD9398960B64684888D1AABB50D4D57BDF32)")
instance 2, C_a:
GroupAffine(x=Fp256 "(6AE271E04FBB0AE9FB89506FF7180F5C06A8D60F802D934987965F694228BF8A)", y=Fp256 "(2BFBFA9CCF2151F01E71A069366DAD9398960B64684888D1AABB50D4D57BDF32)")
instance 1, b:
instance1.b[0] = Fp256 "(08180E66A534AADEBC88D09E1397DC7C33E2014115EB973B489E7D5CDBF839CD)"
instance1.b[1] = Fp256 "(036AFB822FAC04AC9191CCEEF5BF4E27ADA6DC0440C88ECF3E06DC2FAFB162E6)"
instance1.b[2] = Fp256 "(0DE7FE23DCF79F2A041E2C21876F9B9AEB3F2BC628E07B87F52DF460408334F2)"
instance1.b[3] = Fp256 "(0891BBE1E3DA5717F7ED59288C9F51186E7BBAE018C9DA56F4BC8B4BBBD7457E)"
instance1.b[4] = Fp256 "(05D81F4C416350A3D02B1685176BFE5A98FA15D51C84DBD47680326F9F005E96)"
instance1.b[5] = Fp256 "(06D5E58667508A24F3A3FFBB244575DE29ECB3408D6EBC6D3DCDEFF02AA9453C)"
instance1.b[6] = Fp256 "(06BC47A67C6BD353EE624051B4C4A6A28E7F8CEDB6ED65A007D897AC071CBDCB)"
instance1.b[7] = Fp256 "(0CF6D9D35E0B6F2309568E5BB7C19448D993D2EFFEF7B3D77C137A26C524315A)"
instance 2, b:
instance2.b[0] = Fp256 "(08180E66A534AADEBC88D09E1397DC7C33E2014115EB973B489E7D5CDBF839CD)"
instance2.b[1] = Fp256 "(036AFB822FAC04AC9191CCEEF5BF4E27ADA6DC0440C88ECF3E06DC2FAFB162E6)"
instance2.b[2] = Fp256 "(0DE7FE23DCF79F2A041E2C21876F9B9AEB3F2BC628E07B87F52DF460408334F2)"
instance2.b[3] = Fp256 "(0891BBE1E3DA5717F7ED59288C9F51186E7BBAE018C9DA56F4BC8B4BBBD7457E)"
instance2.b[4] = Fp256 "(05D81F4C416350A3D02B1685176BFE5A98FA15D51C84DBD47680326F9F005E96)"
instance2.b[5] = Fp256 "(06D5E58667508A24F3A3FFBB244575DE29ECB3408D6EBC6D3DCDEFF02AA9453C)"
instance2.b[6] = Fp256 "(06BC47A67C6BD353EE624051B4C4A6A28E7F8CEDB6ED65A007D897AC071CBDCB)"
instance2.b[7] = Fp256 "(0CF6D9D35E0B6F2309568E5BB7C19448D993D2EFFEF7B3D77C137A26C524315A)"
We can note a couple of interesting things.
First, points instance1.comm_a
and instance2.comm_a
are equal and vectors instance1.b
and instance2.b
are equal, meaning the two instances are exactly the same (whereas the puzzle description said that the proofs published by Bob where for different different b
vectors).
Second, ck.generators
(vector in the description above) has length
Where does this commitment key come from?
The CommitKey
structure has an associated function allowing to sample a commitment key:
impl CommitKey {
pub fn sample(size: usize) -> Self {
let mut rng = ChaChaRng::from_seed(*b"zkHack IPA puzzle for 2021-10-26");
let generators = sample_vector::<GAffine, _>(size, &mut rng)
.into_iter()
.map(Into::into)
.collect();
let hiding_generator = GProjective::rand(&mut rng).into();
Self {
generators,
hiding_generator,
}
}
// ...
}
We can verify that ck
provided in the puzzle data is indeed the commitment key returned by this function.
These two observations can be checked directly with
#![allow(unused, unreachable_code)]
use ark_ed_on_bls12_381::Fr;
use ark_ff::Field;
use double_trouble::data::puzzle_data;
use double_trouble::inner_product_argument::utils::challenge;
use double_trouble::verify;
use double_trouble::PUZZLE_DESCRIPTION;
use prompt::{puzzle, welcome};
// additional items brought into scope for puzzle solving
use double_trouble::CommitKey;
use ark_ec::AffineCurve;
fn main() {
welcome();
puzzle(PUZZLE_DESCRIPTION);
let (ck, [instance_and_proof_1, instance_and_proof_2]) = puzzle_data();
let (instance1, proof1) = instance_and_proof_1;
let (instance2, proof2) = instance_and_proof_2;
assert!(verify(&ck, &instance1, &proof1));
assert!(verify(&ck, &instance2, &proof2));
// --snip--
println!("commitment key:");
for (i, ck_i) in ck.generators.iter().enumerate() {
println!("ck.generators[{}] = {}", i, ck_i);
}
println!("ck.hiding_generator = {}\n", ck.hiding_generator);
println!("instance 1, C_a:\n {}\n", instance1.comm_a);
println!("instance 2, C_a:\n {}\n", instance2.comm_a);
println!("instance 1, b:");
for (i, b_i) in instance1.b.iter().enumerate() {
println!("instance1.b[{}] = {}", i, b_i);
}
println!("");
println!("instance 2, b:");
for (i, b_i) in instance2.b.iter().enumerate() {
println!("instance2.b[{}] = {}", i, b_i);
}
println!("");
// --snip--
assert_eq!(instance1, instance2);
assert_eq!(ck, CommitKey::sample(8));
// --snip--
println!("proof1, comm_r:\n {}", proof1.commitment.comm_r);
println!("proof1, comm_1:\n {}", proof1.commitment.comm_1);
println!("proof1, comm_2:\n {}\n", proof1.commitment.comm_2);
println!("proof2, comm_r:\n {}", proof2.commitment.comm_r);
println!("proof2, comm_1:\n {}", proof2.commitment.comm_1);
println!("proof2, comm_2:\n {}\n", proof2.commitment.comm_2);
// --snip--
if proof1.commitment.comm_r.mul(2) == proof2.commitment.comm_r {
println!("C_r in the second proof is twice C_r in the first proof\n");
}
// --snip--
let gamma1 = challenge(&ck, &instance1, &proof1.commitment);
let gamma2 = challenge(&ck, &instance2, &proof2.commitment);
let s1 = proof1.response.s;
let s2 = proof2.response.s;
let u1 = proof1.response.u;
let u2 = proof2.response.u;
let k = (gamma1 - Fr::from(2) * gamma2).inverse().unwrap();
let my_a: Vec<Fr> = s1
.iter()
.zip(s2.iter())
.map(|(c1, c2)| k * (gamma1 * c2 - Fr::from(2) * gamma2 * c1))
.collect();
let my_comm_a_rand = k * (gamma1 * u2 - Fr::from(2) * gamma2 * u1);
let (a, comm_a_rand): (Vec<Fr>, Fr) = {
// Your solution here!
(my_a, my_comm_a_rand)
};
assert_eq!(
ck.commit_with_explicit_randomness(&a, comm_a_rand),
instance1.comm_a
);
assert_eq!(
ck.commit_with_explicit_randomness(&a, comm_a_rand),
instance2.comm_a
);
println!("Puzzle solved!");
}
(For this, one needs to derive the PartialEq
trait for structures CommitKey
and Instance
).
As we explained in the section about Pedersen commitments, the knowledge of discrete log relations between the group elements in the commitment key constitutes a trapdoor allowing to break the binding property of the commitment scheme.
However, this does not seem like a promising avenue to solve the puzzle.
On the one hand, this trapdoor does not allow to break the hiding property of the commitment scheme, which is what we would need to recover
On the other hand, function sample
does things correctly by sampling uniformly random and independent group elements using a pseudorandom number generator seeded with NUMS string "zkHack IPA puzzle for 2021-10-26".
A side note about the code: in function sample
, generators
could be defined more simply as
let generators = sample_vector::<GAffine, _>(size, &mut rng);
Indeed, sample_vector::<GAffine, _>(size, &mut rng)
returns an object of type Vec<GAffine>
so there is no need to apply into
to each element.
On the other hand, there does not seem to be any good reason for sampling hiding_generator
as a GProjective
and then cast it into a GAffine
using into
.