Solving the Puzzle
Recall that our task is to find another secret/nullifier pair that will satisfy the spending circuit. We are not allowed to modify the Merkle root nor the Merkle proof, meaning this secret/nullifier pair must correspond to the exact same leaf of the Merkle tree.
But wait, the leaf does not really encode the public key pk
, only its -coordinate!
This is the key insight to solve the puzzle.
Indeed, for any point on the curve (different from the point at infinity), there is another point on the curve with the same -coordinate, namely
This point simply correspond to secret where is the size of the scalar field of the MNT6-753 curve since
Hence, all we have to do to solve the puzzle is to take the opposite of leaked_secret
mod and compute the corresponding nullifier!
There's a catch though: leaked_secret
is defined as an element in the scalar field of MNT4-753, hence simply defining secret_hack = - leaked_secret
won't work as this will compute where is the size of the scalar field of MNT4-753.
There are probably several options here, but a simple one is to cast leaked_secret
as a big integer first.
For this, we need to add the num-bigint
crate to the project:
$ cargo add num-bigint
Here is the code allowing to solve the puzzle:
use ark_ec::AffineRepr;
use ark_ff::PrimeField;
use ark_mnt4_753::{Fr as MNT4BigFr, MNT4_753};
use ark_mnt6_753::G1Affine;
use ark_mnt6_753::{constraints::G1Var, Fr as MNT6BigFr};
use ark_crypto_primitives::merkle_tree::{Config, MerkleTree, Path};
use ark_crypto_primitives::{crh::TwoToOneCRHScheme, snark::SNARK};
use ark_groth16::Groth16;
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::prelude::*;
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystemRef, SynthesisError};
use ark_serialize::{CanonicalDeserialize, Read};
use prompt::{puzzle, welcome};
use std::fs::File;
use std::io::Cursor;
pub mod poseidon_parameters;
type ConstraintF = MNT4BigFr;
use ark_crypto_primitives::{
crh::{poseidon, *},
merkle_tree::constraints::*,
merkle_tree::*,
};
use ark_std::rand::SeedableRng;
type LeafH = poseidon::CRH<ConstraintF>;
type LeafHG = poseidon::constraints::CRHGadget<ConstraintF>;
type CompressH = poseidon::TwoToOneCRH<ConstraintF>;
type CompressHG = poseidon::constraints::TwoToOneCRHGadget<ConstraintF>;
type LeafVar = [FpVar<ConstraintF>];
struct MntMerkleTreeParamsVar;
impl ConfigGadget<MntMerkleTreeParams, ConstraintF> for MntMerkleTreeParamsVar {
type Leaf = LeafVar;
type LeafDigest = <LeafHG as CRHSchemeGadget<LeafH, ConstraintF>>::OutputVar;
type LeafInnerConverter = IdentityDigestConverter<FpVar<ConstraintF>>;
type InnerDigest = <CompressHG as TwoToOneCRHSchemeGadget<CompressH, ConstraintF>>::OutputVar;
type LeafHash = LeafHG;
type TwoToOneHash = CompressHG;
}
type MntMerkleTree = MerkleTree<MntMerkleTreeParams>;
struct MntMerkleTreeParams;
impl Config for MntMerkleTreeParams {
type Leaf = [ConstraintF];
type LeafDigest = <LeafH as CRHScheme>::Output;
type LeafInnerDigestConverter = IdentityDigestConverter<ConstraintF>;
type InnerDigest = <CompressH as TwoToOneCRHScheme>::Output;
type LeafHash = LeafH;
type TwoToOneHash = CompressH;
}
#[derive(Clone)]
struct SpendCircuit {
pub leaf_params: <LeafH as CRHScheme>::Parameters,
pub two_to_one_params: <LeafH as CRHScheme>::Parameters,
pub root: <CompressH as TwoToOneCRHScheme>::Output,
pub proof: Path<MntMerkleTreeParams>,
pub secret: ConstraintF,
pub nullifier: ConstraintF,
}
impl ConstraintSynthesizer<ConstraintF> for SpendCircuit {
fn generate_constraints(
self,
cs: ConstraintSystemRef<ConstraintF>,
) -> Result<(), SynthesisError> {
// Allocate Merkle Tree Root
let root = <LeafHG as CRHSchemeGadget<LeafH, _>>::OutputVar::new_input(
ark_relations::ns!(cs, "new_digest"),
|| Ok(self.root),
)?;
// Allocate Parameters for CRH
let leaf_crh_params_var =
<LeafHG as CRHSchemeGadget<LeafH, _>>::ParametersVar::new_constant(
ark_relations::ns!(cs, "leaf_crh_parameter"),
&self.leaf_params,
)?;
let two_to_one_crh_params_var =
<CompressHG as TwoToOneCRHSchemeGadget<CompressH, _>>::ParametersVar::new_constant(
ark_relations::ns!(cs, "two_to_one_crh_parameter"),
&self.two_to_one_params,
)?;
let secret = FpVar::new_witness(ark_relations::ns!(cs, "secret"), || Ok(self.secret))?;
let secret_bits = secret.to_bits_le()?;
Boolean::enforce_smaller_or_equal_than_le(&secret_bits, MNT6BigFr::MODULUS)?;
let nullifier = <LeafHG as CRHSchemeGadget<LeafH, _>>::OutputVar::new_input(
ark_relations::ns!(cs, "nullifier"),
|| Ok(self.nullifier),
)?;
let nullifier_in_circuit =
<LeafHG as CRHSchemeGadget<LeafH, _>>::evaluate(&leaf_crh_params_var, &[secret])?;
nullifier_in_circuit.enforce_equal(&nullifier)?;
let base = G1Var::new_constant(ark_relations::ns!(cs, "base"), G1Affine::generator())?;
let pk = base.scalar_mul_le(secret_bits.iter())?.to_affine()?;
// Allocate Leaf
let leaf_g: Vec<_> = vec![pk.x];
// Allocate Merkle Tree Path
let cw: PathVar<MntMerkleTreeParams, ConstraintF, MntMerkleTreeParamsVar> =
PathVar::new_witness(ark_relations::ns!(cs, "new_witness"), || Ok(&self.proof))?;
cw.verify_membership(
&leaf_crh_params_var,
&two_to_one_crh_params_var,
&root,
&leaf_g,
)?
.enforce_equal(&Boolean::constant(true))?;
Ok(())
}
}
fn from_file<T: CanonicalDeserialize>(path: &str) -> T {
let mut file = File::open(path).unwrap();
let mut buffer = Vec::new();
file.read_to_end(&mut buffer).unwrap();
T::deserialize_uncompressed_unchecked(Cursor::new(&buffer)).unwrap()
}
fn main() {
welcome();
puzzle(PUZZLE_DESCRIPTION);
let rng = &mut ark_std::rand::rngs::StdRng::seed_from_u64(0u64);
let leaves: Vec<Vec<MNT4BigFr>> = from_file("./leaves.bin");
let leaked_secret: MNT4BigFr = from_file("./leaked_secret.bin");
let (pk, vk): (
<Groth16<MNT4_753> as SNARK<MNT4BigFr>>::ProvingKey,
<Groth16<MNT4_753> as SNARK<MNT4BigFr>>::VerifyingKey,
) = from_file("./proof_keys.bin");
let leaf_crh_params = poseidon_parameters::poseidon_parameters();
let i = 2;
let two_to_one_crh_params = leaf_crh_params.clone();
let nullifier = <LeafH as CRHScheme>::evaluate(&leaf_crh_params, vec![leaked_secret]).unwrap();
let tree = MntMerkleTree::new(
&leaf_crh_params,
&two_to_one_crh_params,
leaves.iter().map(|x| x.as_slice()),
)
.unwrap();
let root = tree.root();
let leaf = &leaves[i];
let tree_proof = tree.generate_proof(i).unwrap();
assert!(tree_proof
.verify(
&leaf_crh_params,
&two_to_one_crh_params,
&root,
leaf.as_slice()
)
.unwrap());
let c = SpendCircuit {
leaf_params: leaf_crh_params.clone(),
two_to_one_params: two_to_one_crh_params.clone(),
root: root.clone(),
proof: tree_proof.clone(),
nullifier: nullifier.clone(),
secret: leaked_secret.clone(),
};
let proof = Groth16::<MNT4_753>::prove(&pk, c.clone(), rng).unwrap();
// --snip--
for (i, leaf) in leaves.iter().enumerate() {
for (j, p) in leaf.iter().enumerate() {
println!("leaves[{}][{}]: {}", i, j, p);
}
}
println!("");
assert!(Groth16::<MNT4_753>::verify(&vk, &vec![root, nullifier], &proof).unwrap());
// --snip--
/* Enter your solution here */
// cast leaked_secret as big integer...
let s: num_bigint::BigUint = leaked_secret.into();
// ... and then as an element of MNT6BigFr
let s_as_mnt6bigfr = MNT6BigFr::from_le_bytes_mod_order(&s.to_bytes_le());
// take the opposite and cast it again as a big integer...
let secret_hack_as_bigint: num_bigint::BigUint = (-s_as_mnt6bigfr).into();
// and finally cast it back to an element of MNT4BigFr
let secret_hack = MNT4BigFr::from_le_bytes_mod_order(&secret_hack_as_bigint.to_bytes_le());
// compute the corresponding nullifier
let nullifier_hack =
<LeafH as CRHScheme>::evaluate(&leaf_crh_params, vec![secret_hack]).unwrap();
println!("nullifier_hack: {}", nullifier_hack);
println!("secret_hack: {}", secret_hack_as_bigint);
/* End of solution */
assert_ne!(nullifier, nullifier_hack);
let c2 = SpendCircuit {
leaf_params: leaf_crh_params.clone(),
two_to_one_params: two_to_one_crh_params.clone(),
root: root.clone(),
proof: tree_proof.clone(),
nullifier: nullifier_hack.clone(),
secret: secret_hack.clone(),
};
let proof = Groth16::<MNT4_753>::prove(&pk, c2.clone(), rng).unwrap();
assert!(Groth16::<MNT4_753>::verify(&vk, &vec![root, nullifier_hack], &proof).unwrap());
println!("Puzzle solved!");
}
const PUZZLE_DESCRIPTION: &str = r"
Bob was deeply inspired by the Zcash design [1] for private transactions [2] and had some pretty cool ideas on how to adapt it for his requirements. He was also inspired by the Mina design for the lightest blockchain and wanted to combine the two. In order to achieve that, Bob used the MNT7653 cycle of curves to enable efficient infinite recursion, and used elliptic curve public keys to authorize spends. He released a first version of the system to the world and Alice soon announced she was able to double spend by creating two different nullifiers for the same key...
[1] https://zips.z.cash/protocol/protocol.pdf
";
A Note about Hint 1
The first hint revealed to help solve the puzzle points to Lemma 5.4.7 of the Zcash specifications. It reads:
Let Then
Here, is (a subgroup of) the Jubjub curve developed by the ZCash team. Its base field is actually the scalar field of BLS12-381, allowing to efficiently prove algebraic statements about this curve using BLS12-381-based SNARKs.
The reason why the "attack" used to solve the puzzle would not apply with this curve is that it is a twisted Edwards curve rather than a curve in short Weierstrass form. In particular, Theorem 5.4.8 in the same document states that the function mapping points in to their -coordinate is injective, meaning two distinct points have distinct -coordinates. In this case, it is safe to encode a point by recording only its -coordinate in a leaf.